This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339582 #11 Dec 24 2020 21:11:08 %S A339582 7,151,631,823,1063,1303,1783,2647,2887,3511,4423,4567,4951,5527,6007, %T A339582 6871,7351,7687,7927,8311,9127,10663,11383,11863,12007,12343,12487, %U A339582 13591,14071,15031,15607,15991,16087,17047,17191,17431,17623,17911,19207,20023,20407 %N A339582 Primes p = 8*r-1 such that all the prime factors of r are 7 mod 12. %C A339582 Hugh Williams asks if this sequence is infinite. %H A339582 Robert Israel, <a href="/A339582/b339582.txt">Table of n, a(n) for n = 1..10000</a> %H A339582 R. K. Guy, editor, <a href="/A339579/a339579.pdf">Western Number Theory Problems, 1985-12-21 & 23</a>, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission. See Problem 85:16. %p A339582 filter:= n -> %p A339582 isprime(n) and numtheory:-factorset((n+1)/8) mod 12 subset {7}: %p A339582 select(filter, [seq(i,i=7..10^5,8)]); # _Robert Israel_, Dec 24 2020 %o A339582 (PARI) isok(p) = if (isprime(p) && (Mod(p, 8)== -1), my(r=(p+1)/8, f=factor(r)[,1]); #select(x->(Mod(x, 12) == 7), f) == #f); \\ _Michel Marcus_, Dec 24 2020 %Y A339582 Subsequence of A007522. %K A339582 nonn %O A339582 1,1 %A A339582 _N. J. A. Sloane_, Dec 24 2020 %E A339582 More terms from _Michel Marcus_, Dec 24 2020, who also added the initial term 7.