This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339613 #11 Dec 10 2020 08:52:50 %S A339613 1,2,2,2,5,8,15,30,57,115,211,398,783,1528,3002,5893,11432,22247, %T A339613 43663,86348,170472,335636,662988,1312816,2595986,5121351,10096635, %U A339613 19930303,39469458,78311512,155219706,307373610,607613871,1202463562,2383024521,4736192475,9413441133 %N A339613 Number of sets of distinct primes whose sum is a prime, the largest element of a set is prime(n). %e A339613 a(6) = 8 sets: {13}, {3, 7, 13}, {5, 11, 13}, {7, 11, 13}, {2, 3, 5, 13}, {2, 3, 11, 13}, {2, 5, 11, 13} and {2, 3, 5, 7, 11, 13}. %o A339613 (Python) %o A339613 from sympy import prime, isprime %o A339613 from functools import lru_cache %o A339613 @lru_cache(maxsize=None) %o A339613 def b(n, s, c): %o A339613 if n == 0: %o A339613 if isprime(s): return 1 %o A339613 return 0 %o A339613 return b(n-1, s, c) + b(n-1, s+prime(n), c+1) %o A339613 a = lambda n: b(n-1, prime(n), 1) %o A339613 print([a(n) for n in range(1, 20)]) # _Michael S. Branicky_, Dec 10 2020 %Y A339613 Cf. A000040, A071810 (partial sums), A127542. %K A339613 nonn %O A339613 1,2 %A A339613 _Ilya Gutkovskiy_, Dec 09 2020 %E A339613 a(35)-a(37) from _Michael S. Branicky_, Dec 09 2020