This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339618 #12 Feb 16 2025 08:34:01 %S A339618 3,7,9,10,13,19,21,22,25,28,29,30,34,37,39,43,46,49,52,53,55,57,61,62, %T A339618 63,66,70,71,75,76,79,82,84,85,87,88,89,91,94,100,101,102,107,111,113, %U A339618 115,116,117,118,121,129,130,131,133,134,136,138,139,146,147 %N A339618 Heinz numbers of non-graphical integer partitions of even numbers. %C A339618 An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569. %C A339618 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %C A339618 The following are equivalent characteristics for any positive integer n: %C A339618 (1) the multiset of prime indices of n can be partitioned into distinct strict pairs (a set of edges); %C A339618 (2) n can be factored into distinct squarefree semiprimes; %C A339618 (3) the unordered prime signature of n is graphical. %H A339618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition.</a> %F A339618 Equals A300061 \ A320922. %F A339618 For all n, A181821(a(n)) and A304660(a(n)) belong to A320894. %e A339618 The sequence of terms together with their prime indices begins: %e A339618 3: {2} 43: {14} 79: {22} %e A339618 7: {4} 46: {1,9} 82: {1,13} %e A339618 9: {2,2} 49: {4,4} 84: {1,1,2,4} %e A339618 10: {1,3} 52: {1,1,6} 85: {3,7} %e A339618 13: {6} 53: {16} 87: {2,10} %e A339618 19: {8} 55: {3,5} 88: {1,1,1,5} %e A339618 21: {2,4} 57: {2,8} 89: {24} %e A339618 22: {1,5} 61: {18} 91: {4,6} %e A339618 25: {3,3} 62: {1,11} 94: {1,15} %e A339618 28: {1,1,4} 63: {2,2,4} 100: {1,1,3,3} %e A339618 29: {10} 66: {1,2,5} 101: {26} %e A339618 30: {1,2,3} 70: {1,3,4} 102: {1,2,7} %e A339618 34: {1,7} 71: {20} 107: {28} %e A339618 37: {12} 75: {2,3,3} 111: {2,12} %e A339618 39: {2,6} 76: {1,1,8} 113: {30} %e A339618 For example, there are three possible multigraphs with degrees (1,1,3,3): %e A339618 {{1,2},{1,2},{1,2},{3,4}} %e A339618 {{1,2},{1,2},{1,3},{2,4}} %e A339618 {{1,2},{1,2},{1,4},{2,3}}. %e A339618 Since none of these is a graph, the Heinz number 100 belongs to the sequence. %t A339618 strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; %t A339618 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A339618 Select[Range[100],EvenQ[Length[nrmptn[#]]]&&strs[Times@@Prime/@nrmptn[#]]=={}&] %Y A339618 A181819 applied to A320894 gives this sequence. %Y A339618 A300061 is a superset. %Y A339618 A339617 counts these partitions. %Y A339618 A320922 ranks the complement, counted by A000569. %Y A339618 A006881 lists squarefree semiprimes. %Y A339618 A320656 counts factorizations into squarefree semiprimes. %Y A339618 A339659 counts graphical partitions of 2n into k parts. %Y A339618 The following count vertex-degree partitions and give their Heinz numbers: %Y A339618 - A058696 counts partitions of 2n (A300061). %Y A339618 - A000070 counts non-multigraphical partitions of 2n (A339620). %Y A339618 - A209816 counts multigraphical partitions (A320924). %Y A339618 - A339655 counts non-loop-graphical partitions of 2n (A339657). %Y A339618 - A339656 counts loop-graphical partitions (A339658). %Y A339618 - A339617 counts non-graphical partitions of 2n (A339618 [this sequence]). %Y A339618 - A000569 counts graphical partitions (A320922). %Y A339618 The following count partitions of even length and give their Heinz numbers: %Y A339618 - A027187 has no additional conditions (A028260). %Y A339618 - A096373 cannot be partitioned into strict pairs (A320891). %Y A339618 - A338914 can be partitioned into strict pairs (A320911). %Y A339618 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A339618 - A338916 can be partitioned into distinct pairs (A320912). %Y A339618 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A339618 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A339618 Cf. A001358, A007717, A050326, A320923, A338899. %K A339618 nonn %O A339618 1,1 %A A339618 _Gus Wiseman_, Dec 18 2020