This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339619 #10 Apr 22 2021 01:42:23 %S A339619 1,0,1,1,2,1,4,1,5,3,7,2,13,2,13,9,17,6,27,7,33,19,35,16,58,22,58,39, %T A339619 75,37,108,44,117,75,132,88,190,94,199,147,250,153,322,180,363,271, %U A339619 405,286,544,339,601,458,699,503,868,608,990,777,1113,865,1422,993 %N A339619 Number of integer partitions of n with no 1's and a part divisible by all the other parts. %C A339619 Alternative name: Number of integer partitions of n with no 1's that are empty or have greatest part divisible by all the other parts. %e A339619 The a(6) = 4 through a(16) = 17 partitions (A..G = 10..16): %e A339619 6 7 8 9 A B C D E F G %e A339619 33 44 63 55 632 66 6322 77 A5 88 %e A339619 42 62 333 82 84 C2 C3 C4 %e A339619 222 422 442 93 662 555 E2 %e A339619 2222 622 A2 842 663 844 %e A339619 4222 444 A22 933 C22 %e A339619 22222 633 4442 6333 4444 %e A339619 822 6332 33333 6622 %e A339619 3333 8222 63222 8422 %e A339619 4422 44222 A222 %e A339619 6222 62222 44422 %e A339619 42222 422222 63322 %e A339619 222222 2222222 82222 %e A339619 442222 %e A339619 622222 %e A339619 4222222 %e A339619 22222222 %t A339619 Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Or@@And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] %Y A339619 The dual version is A083711. %Y A339619 The version with 1's allowed is A130689. %Y A339619 The strict case is A339660. %Y A339619 The Heinz numbers of these partitions are the odd complement of A343337. %Y A339619 The strict case with 1's allowed is A343347. %Y A339619 A000009 counts strict partitions. %Y A339619 A000041 counts partitions. %Y A339619 A000070 counts partitions with a selected part. %Y A339619 A006128 counts partitions with a selected position. %Y A339619 A015723 counts strict partitions with a selected part. %Y A339619 Cf. A066186, A083710, A083711, A097986, A130714, A338470, A343341, A343342, A343346, A343377, A343382. %K A339619 nonn %O A339619 0,5 %A A339619 _Gus Wiseman_, Apr 18 2021