This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339620 #11 Feb 16 2025 08:34:01 %S A339620 3,7,10,13,19,21,22,28,29,34,37,39,43,46,52,53,55,57,61,62,66,71,76, %T A339620 79,82,85,87,88,89,91,94,101,102,107,111,113,115,116,117,118,129,130, %U A339620 131,133,134,136,138,139,146,148,151,155,156,159,163,166,171,172,173 %N A339620 Heinz numbers of non-multigraphical partitions of even numbers. %C A339620 An integer partition is non-multigraphical if it does not comprise the multiset of vertex-degrees of any multigraph (multiset of non-loop edges). Multigraphical partitions are counted by A209816, non-multigraphical partitions by A000070. %C A339620 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %C A339620 The following are equivalent characteristics for any positive integer n: %C A339620 (1) the multiset of prime indices of n can be partitioned into strict pairs (a multiset of edges); %C A339620 (2) n can be factored into squarefree semiprimes; %C A339620 (3) the unordered prime signature of n is multigraphical. %H A339620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition.</a> %F A339620 Equals A300061 \ A320924. %F A339620 For all n, both A181821(a(n)) and A304660(a(n)) belong to A320891. %e A339620 The sequence of terms together with their prime indices begins: %e A339620 3: {2} 53: {16} 94: {1,15} %e A339620 7: {4} 55: {3,5} 101: {26} %e A339620 10: {1,3} 57: {2,8} 102: {1,2,7} %e A339620 13: {6} 61: {18} 107: {28} %e A339620 19: {8} 62: {1,11} 111: {2,12} %e A339620 21: {2,4} 66: {1,2,5} 113: {30} %e A339620 22: {1,5} 71: {20} 115: {3,9} %e A339620 28: {1,1,4} 76: {1,1,8} 116: {1,1,10} %e A339620 29: {10} 79: {22} 117: {2,2,6} %e A339620 34: {1,7} 82: {1,13} 118: {1,17} %e A339620 37: {12} 85: {3,7} 129: {2,14} %e A339620 39: {2,6} 87: {2,10} 130: {1,3,6} %e A339620 43: {14} 88: {1,1,1,5} 131: {32} %e A339620 46: {1,9} 89: {24} 133: {4,8} %e A339620 52: {1,1,6} 91: {4,6} 134: {1,19} %e A339620 For example, a complete lists of all loop-multigraphs with degrees (5,2,1) is: %e A339620 {{1,1},{1,1},{1,2},{2,3}} %e A339620 {{1,1},{1,1},{1,3},{2,2}} %e A339620 {{1,1},{1,2},{1,2},{1,3}}, %e A339620 but since none of these is a multigraph (they have loops), the Heinz number 66 belongs to the sequence. %t A339620 prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Select[Subsets[Union[m],{2}],MemberQ[#,m[[1]]]&]}]]; %t A339620 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A339620 Select[Range[100],EvenQ[Length[nrmptn[#]]]&&prpts[nrmptn[#]]=={}&] %Y A339620 A000070 counts these partitions. %Y A339620 A300061 is a superset. %Y A339620 A320891 has image under A181819 equal to this set of terms. %Y A339620 A001358 lists semiprimes, with squarefree case A006881. %Y A339620 A002100 counts partitions into squarefree semiprimes. %Y A339620 A320656 counts factorizations into squarefree semiprimes. %Y A339620 The following count vertex-degree partitions and give their Heinz numbers: %Y A339620 - A058696 counts partitions of 2n (A300061). %Y A339620 - A000070 counts non-multigraphical partitions of 2n (A339620 [this sequence]). %Y A339620 - A209816 counts multigraphical partitions (A320924). %Y A339620 - A147878 counts connected multigraphical partitions (A320925). %Y A339620 - A339655 counts non-loop-graphical partitions of 2n (A339657). %Y A339620 - A339656 counts loop-graphical partitions (A339658). %Y A339620 - A339617 counts non-graphical partitions of 2n (A339618). %Y A339620 - A000569 counts graphical partitions (A320922). %Y A339620 The following count partitions of even length and give their Heinz numbers: %Y A339620 - A027187 has no additional conditions (A028260). %Y A339620 - A096373 cannot be partitioned into strict pairs (A320891). %Y A339620 - A338914 can be partitioned into strict pairs (A320911). %Y A339620 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A339620 - A338916 can be partitioned into distinct pairs (A320912). %Y A339620 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A339620 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A339620 Cf. A001055, A005117, A007717, A030229, A050320, A056239, A112798, A320655, A338899, A339113, A339661. %K A339620 nonn %O A339620 1,1 %A A339620 _Gus Wiseman_, Dec 18 2020