cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339621 Sum of Fibonacci divisors of n^2 + 1.

This page as a plain text file.
%I A339621 #31 Aug 10 2022 07:57:22
%S A339621 1,3,6,8,1,16,1,8,19,3,1,3,6,42,1,3,1,8,19,3,1,50,6,8,1,3,1,8,6,3,1,
%T A339621 16,6,8,103,3,1,8,6,3,1,3,6,8,14,3,1,55,6,3,1,3,6,8,1,126,1,21,6,3,14,
%U A339621 3,6,8,1,3,1,8,6,3,391,3,6,21,1,3,1,8,6,3,1,37
%N A339621 Sum of Fibonacci divisors of n^2 + 1.
%C A339621 A Fibonacci divisor of a number k is a Fibonacci number that divides k. (The divisor 1 is only counted once.)
%C A339621 For n < 2*10^5, the subsequence of primes begins by 3, 19, 37, 97, 103, 131, 139, 239, 241, 283, 359, 487, 631, ...
%C A339621 The Fibonacci numbers of the sequence are 1, 3, 8, 21, 55, 144, 377, ...
%C A339621 Conjecture: If the sum of the Fibonacci divisors of m^2 + 1 is a Fibonacci number, then this number belongs to the sequence A001906(n) = F(2n) where F(n) is the Fibonacci sequence.
%C A339621 The sequence giving the least k such that the sum of Fibonacci divisors of k^2 + 1 is equal to F(2*n) for n > 0 begins with: 0, 1, 3, 57, 47, 15007, 1679553, ...
%H A339621 Michel Marcus, <a href="/A339621/b339621.txt">Table of n, a(n) for n = 0..10000</a>
%F A339621 a(A005574(n)) = 1 for n > 2.
%F A339621 a(n) = 3 when n^2 + 1 = 2*p, p prime and non-Fibonacci number.
%F A339621 a(n) = A005092(A002522(n)). - _Michel Marcus_, Aug 10 2022
%e A339621 a(3) = 8 because the divisors of 3^2 + 1 = 10 are {1, 2, 5, 10}, and the sum of the Fibonacci divisors is 1 + 2 + 5 = 8.
%p A339621 a:= n-> add(`if`(issqr(5*d^2+4) or issqr(5*d^2-4), d, 0)
%p A339621 , d=numtheory[divisors](n^2+1)):seq(a(n), n=0..100);
%t A339621 Array[DivisorSum[#^2 + 1, # &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 82, 0] (* _Michael De Vlieger_, Dec 10 2020 *)
%o A339621 (PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
%o A339621 a(n) = sumdiv(n^2+1, d, if (isfib(d), d)); \\ _Michel Marcus_, Dec 10 2020
%Y A339621 Cf. A000045, A001906, A002522, A005092, A005574, A339461.
%K A339621 nonn
%O A339621 0,2
%A A339621 _Michel Lagneau_, Dec 10 2020