This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339622 #29 Dec 26 2020 02:41:53 %S A339622 1,498,26499,1475286,100766213,6523266332,418172485806,26971800950170, %T A339622 1738936046774850,112060168171247368,7222422644817870197, %U A339622 465494892350086836970,30001329862709920944426,1933604967243463575726934,124622105764386987040047037,8031972575008760516889720476 %N A339622 Number of Hamiltonian circuits within parallelograms of size 7 X n on the triangular lattice. %H A339622 Seiichi Manyama, <a href="/A339622/b339622.txt">Table of n, a(n) for n = 2..150</a> %H A339622 Olga Bodroža-Pantić, Harris Kwong and Milan Pantić, <a href="https://doi.org/10.1016/j.dam.2015.07.028">Some new characterizations of Hamiltonian cycles in triangular grid graphs</a>, Discrete Appl. Math. 201 (2016) 1-13. (a(n) is equal to h6(n-1) defined by this paper) %H A339622 M. Peto, <a href="https://doi.org/10.31274/rtd-180813-17105">Studies of protein designability using reduced models</a>, Thesis, 2007. %o A339622 (Python) %o A339622 # Using graphillion %o A339622 from graphillion import GraphSet %o A339622 def make_T_nk(n, k): %o A339622 grids = [] %o A339622 for i in range(1, k + 1): %o A339622 for j in range(1, n): %o A339622 grids.append((i + (j - 1) * k, i + j * k)) %o A339622 if i < k: %o A339622 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339622 for i in range(1, k * n, k): %o A339622 for j in range(1, k): %o A339622 grids.append((i + j - 1, i + j)) %o A339622 return grids %o A339622 def A339849(n, k): %o A339622 universe = make_T_nk(n, k) %o A339622 GraphSet.set_universe(universe) %o A339622 cycles = GraphSet.cycles(is_hamilton=True) %o A339622 return cycles.len() %o A339622 def A339622(n): %o A339622 return A339849(7, n) %o A339622 print([A339622(n) for n in range(2, 8)]) %Y A339622 Row 7 of A339849. %Y A339622 Cf. A145416. %K A339622 nonn %O A339622 2,2 %A A339622 _Seiichi Manyama_, Dec 25 2020