This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339625 #11 Dec 11 2020 03:35:34 %S A339625 0,1,2,3,2,3,2,4,2,3,2,4,4,3,4,0,4,2,6,5,2,4,2,5,4,4,4,6,2,6,2,4,6,5, %T A339625 12,3,6,2,4,8,6,8,8,2,6,3,6,10,4,13,2,6,4,4,10,4,10,4,6,3,4,6,10,5,8, %U A339625 1,0,6,2,12,4,6,6,2,10,3,10,6,6,7,2,8,4,6,6,0,6,6,6,9,2,6,2,5,6,4 %N A339625 a(n) is the number of ways to write 6*n = p + q with p a lesser twin prime (A001359) and q a greater twin prime (A006512). %C A339625 If 6*n = p + q, then also 6*n = (p+2) + (q-2), with p+2 a greater and q-2 a lesser twin prime. Thus a(n) is odd if and only if n/2 is in A002822. %H A339625 Robert Israel, <a href="/A339625/b339625.txt">Table of n, a(n) for n = 1..10000</a> %e A339625 a(4)=3 because 6*4 = 24 = 5 + 19 = 11 + 13 = 17 + 7 where (5,7), (11,13) and (17,19) are twin prime pairs. %p A339625 N:= 600: # for a(1)..a(floor(N/6))) %p A339625 P:= select(isprime, {seq(i,i=3..N,2)}): %p A339625 T1:= sort(convert(P intersect map(`-`,P,2),list)): %p A339625 T2:= map(`+`,T1,2): %p A339625 V:= Vector(N): %p A339625 nT:= nops(T1): %p A339625 for i from 1 to nT do %p A339625 for j from 1 to nT do %p A339625 v:= T1[i]+T2[j]; %p A339625 if v > N then break fi; %p A339625 V[v]:= V[v]+1; %p A339625 od od: %p A339625 seq(V[6*i],i=1..N/6); %Y A339625 Cf. A001359, A006512, A002822, A339630. %Y A339625 a(n)=0 for n in A243956. %K A339625 nonn %O A339625 1,3 %A A339625 _J. M. Bergot_ and _Robert Israel_, Dec 10 2020