This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339642 #16 Jan 04 2021 08:43:44 %S A339642 0,2,10,44,196,876,4020,18766,89322,431758,2116220,10494080,52569504, %T A339642 265647586,1352621168,6933127446,35745747902,185256755454, %U A339642 964575991660,5043194697556,26467075595080,139375175511598,736228488297566,3900073083063348,20714052518640904 %N A339642 Number of rooted trees with n nodes colored using exactly 2 colors. %H A339642 Andrew Howroyd, <a href="/A339642/b339642.txt">Table of n, a(n) for n = 1..500</a> %F A339642 a(n) = A038055(n) - 2*A000081(n). %F A339642 a(n) = 2*(A000151(n) - A000081(n)). %e A339642 a(3) = 10 includes 5 trees and their color complements: %e A339642 (1(12)), (1(22)), (1(1(2))), (1(2(1))), (1(2(2))). %p A339642 b:= proc(n, k) option remember; `if`(n<2, k*n, (add(add(b(d, k)* %p A339642 d, d=numtheory[divisors](j))*b(n-j, k), j=1..n-1))/(n-1)) %p A339642 end: %p A339642 a:= n-> b(n, 2)-2*b(n, 1): %p A339642 seq(a(n), n=1..25); # _Alois P. Heinz_, Dec 11 2020 %t A339642 b[n_, k_] := b[n, k] = If[n < 2, k*n, (Sum[Sum[b[d, k]*d, {d, Divisors[j]}]*b[n - j, k], {j, 1, n - 1}])/(n - 1)]; %t A339642 a[n_] := b[n, 2] - 2*b[n, 1]; %t A339642 Array[a, 25] (* _Jean-François Alcover_, Jan 04 2021, after _Alois P. Heinz_ *) %o A339642 (PARI) \\ See A141610 for U(N,m) %o A339642 seq(n)={U(n,2) - 2*U(n,1)} %Y A339642 Column 2 of A141610. %Y A339642 Cf. A000081, A000151, A038055, A339643. %K A339642 nonn %O A339642 1,2 %A A339642 _Andrew Howroyd_, Dec 11 2020