cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339645 Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.

This page as a plain text file.
%I A339645 #22 Jan 22 2021 20:27:15
%S A339645 1,1,1,2,3,2,5,17,12,5,12,73,95,44,12,33,369,721,512,168,33,90,1795,
%T A339645 5487,5480,2556,625,90,261,9192,41945,58990,36711,12306,2342,261,766,
%U A339645 47324,321951,625088,516952,224241,57155,8702,766,2312,249164,2483192,6593103,7141755,3965673,1283624,258887,32313,2312
%N A339645 Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.
%C A339645 Only the leaves are colored. Equivalence is up to permutation of the colors.
%C A339645 Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.
%H A339645 Andrew Howroyd, <a href="/A339645/a339645_1.txt">PARI Functions for Combinatorial Species</a>, v2, Dec 2020.
%H A339645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Combinatorial_species">Combinatorial species</a>
%e A339645 Triangle begins:
%e A339645     1;
%e A339645     1,     1;
%e A339645     2,     3,      2;
%e A339645     5,    17,     12,      5;
%e A339645    12,    73,     95,     44,     12;
%e A339645    33,   369,    721,    512,    168,     33;
%e A339645    90,  1795,   5487,   5480,   2556,    625,    90;
%e A339645   261,  9192,  41945,  58990,  36711,  12306,  2342,  261;
%e A339645   766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766;
%e A339645   ...
%e A339645 From _Gus Wiseman_, Jan 02 2021: (Start)
%e A339645 Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves:
%e A339645   (1111)      (1112)      (1123)      (1234)
%e A339645   (1(111))    (1122)      (1(123))    (1(234))
%e A339645   (11(11))    (1(112))    (11(23))    (12(34))
%e A339645   ((11)(11))  (11(12))    (12(13))    ((12)(34))
%e A339645   (1(1(11)))  (1(122))    (2(113))    (1(2(34)))
%e A339645               (11(22))    (23(11))
%e A339645               (12(11))    ((11)(23))
%e A339645               (12(12))    (1(1(23)))
%e A339645               (2(111))    ((12)(13))
%e A339645               ((11)(12))  (1(2(13)))
%e A339645               (1(1(12)))  (2(1(13)))
%e A339645               ((11)(22))  (2(3(11)))
%e A339645               (1(1(22)))
%e A339645               (1(2(11)))
%e A339645               ((12)(12))
%e A339645               (1(2(12)))
%e A339645               (2(1(11)))
%e A339645 (End)
%o A339645 (PARI) \\ See link above for combinatorial species functions.
%o A339645 cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
%o A339645 {my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n,1..n]))}
%Y A339645 The case with only one color is A000669.
%Y A339645 Counting by nodes gives A318231.
%Y A339645 A labeled version is A319376.
%Y A339645 Row sums are A330470.
%Y A339645 A000311 counts singleton-reduced phylogenetic trees.
%Y A339645 A001678 counts unlabeled lone-child-avoiding rooted trees.
%Y A339645 A005121 counts chains of set partitions, with maximal case A002846.
%Y A339645 A005804 counts phylogenetic rooted trees with n labels.
%Y A339645 A060356 counts labeled lone-child-avoiding rooted trees.
%Y A339645 A141268 counts lone-child-avoiding rooted trees with leaves summing to n.
%Y A339645 A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
%Y A339645 A316651 counts lone-child-avoiding rooted trees with normal leaves.
%Y A339645 A316652 counts lone-child-avoiding rooted trees with strongly normal leaves.
%Y A339645 A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees.
%Y A339645 Cf. A196545, A213427, A281118, A289501, A292504, A318812, A319312, A330627.
%K A339645 nonn,tabl
%O A339645 1,4
%A A339645 _Andrew Howroyd_, Dec 11 2020