This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339645 #22 Jan 22 2021 20:27:15 %S A339645 1,1,1,2,3,2,5,17,12,5,12,73,95,44,12,33,369,721,512,168,33,90,1795, %T A339645 5487,5480,2556,625,90,261,9192,41945,58990,36711,12306,2342,261,766, %U A339645 47324,321951,625088,516952,224241,57155,8702,766,2312,249164,2483192,6593103,7141755,3965673,1283624,258887,32313,2312 %N A339645 Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors. %C A339645 Only the leaves are colored. Equivalence is up to permutation of the colors. %C A339645 Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences. %H A339645 Andrew Howroyd, <a href="/A339645/a339645_1.txt">PARI Functions for Combinatorial Species</a>, v2, Dec 2020. %H A339645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Combinatorial_species">Combinatorial species</a> %e A339645 Triangle begins: %e A339645 1; %e A339645 1, 1; %e A339645 2, 3, 2; %e A339645 5, 17, 12, 5; %e A339645 12, 73, 95, 44, 12; %e A339645 33, 369, 721, 512, 168, 33; %e A339645 90, 1795, 5487, 5480, 2556, 625, 90; %e A339645 261, 9192, 41945, 58990, 36711, 12306, 2342, 261; %e A339645 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766; %e A339645 ... %e A339645 From _Gus Wiseman_, Jan 02 2021: (Start) %e A339645 Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves: %e A339645 (1111) (1112) (1123) (1234) %e A339645 (1(111)) (1122) (1(123)) (1(234)) %e A339645 (11(11)) (1(112)) (11(23)) (12(34)) %e A339645 ((11)(11)) (11(12)) (12(13)) ((12)(34)) %e A339645 (1(1(11))) (1(122)) (2(113)) (1(2(34))) %e A339645 (11(22)) (23(11)) %e A339645 (12(11)) ((11)(23)) %e A339645 (12(12)) (1(1(23))) %e A339645 (2(111)) ((12)(13)) %e A339645 ((11)(12)) (1(2(13))) %e A339645 (1(1(12))) (2(1(13))) %e A339645 ((11)(22)) (2(3(11))) %e A339645 (1(1(22))) %e A339645 (1(2(11))) %e A339645 ((12)(12)) %e A339645 (1(2(12))) %e A339645 (2(1(11))) %e A339645 (End) %o A339645 (PARI) \\ See link above for combinatorial species functions. %o A339645 cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)} %o A339645 {my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n,1..n]))} %Y A339645 The case with only one color is A000669. %Y A339645 Counting by nodes gives A318231. %Y A339645 A labeled version is A319376. %Y A339645 Row sums are A330470. %Y A339645 A000311 counts singleton-reduced phylogenetic trees. %Y A339645 A001678 counts unlabeled lone-child-avoiding rooted trees. %Y A339645 A005121 counts chains of set partitions, with maximal case A002846. %Y A339645 A005804 counts phylogenetic rooted trees with n labels. %Y A339645 A060356 counts labeled lone-child-avoiding rooted trees. %Y A339645 A141268 counts lone-child-avoiding rooted trees with leaves summing to n. %Y A339645 A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees. %Y A339645 A316651 counts lone-child-avoiding rooted trees with normal leaves. %Y A339645 A316652 counts lone-child-avoiding rooted trees with strongly normal leaves. %Y A339645 A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees. %Y A339645 Cf. A196545, A213427, A281118, A289501, A292504, A318812, A319312, A330627. %K A339645 nonn,tabl %O A339645 1,4 %A A339645 _Andrew Howroyd_, Dec 11 2020