cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339649 Array read by antidiagonals: T(n,k) is the number of leaf colored trees with n leaves of k colors and all non-leaf nodes having degree 3.

This page as a plain text file.
%I A339649 #16 Apr 20 2023 14:56:39
%S A339649 1,1,0,1,1,0,1,2,1,0,1,3,3,1,0,1,4,6,4,1,0,1,5,10,10,6,1,0,1,6,15,20,
%T A339649 21,12,2,0,1,7,21,35,55,63,31,2,0,1,8,28,56,120,220,227,78,4,0,1,9,36,
%U A339649 84,231,600,1040,891,234,6,0,1,10,45,120,406,1386,3530,5480,3876,722,11,0
%N A339649 Array read by antidiagonals: T(n,k) is the number of leaf colored trees with n leaves of k colors and all non-leaf nodes having degree 3.
%C A339649 Not all k colors need to be used. The total number of nodes will be 2n-1.
%C A339649 See table 4.1 in the Johnson reference.
%H A339649 Andrew Howroyd, <a href="/A339649/b339649.txt">Table of n, a(n) for n = 0..1325</a>
%H A339649 Virginia Perkins Johnson, <a href="https://people.math.sc.edu/czabarka/Theses/JohnsonThesis.pdf">Enumeration Results on Leaf Labeled Trees</a>, Ph. D. Dissertation, Univ. South Carolina, 2012.
%F A339649 G.f. of column k: 1 + R(x) + (R(x^3) - R(x)^3)/3 where R(x) is the g.f. of column k of A319539.
%e A339649 Array begins:
%e A339649 ======================================================
%e A339649 n\k| 0 1   2     3      4       5       6        7
%e A339649 ---+--------------------------------------------------
%e A339649 0  | 1 1   1     1      1       1       1        1 ...
%e A339649 1  | 0 1   2     3      4       5       6        7 ...
%e A339649 2  | 0 1   3     6     10      15      21       28 ...
%e A339649 3  | 0 1   4    10     20      35      56       84 ...
%e A339649 4  | 0 1   6    21     55     120     231      406 ...
%e A339649 5  | 0 1  12    63    220     600    1386     2842 ...
%e A339649 6  | 0 2  31   227   1040    3530    9772    23366 ...
%e A339649 7  | 0 2  78   891   5480   23250   77112   214718 ...
%e A339649 8  | 0 4 234  3876  31420  165510  655599  2122099 ...
%e A339649 9  | 0 6 722 17790 190360 1243825 5878446 22102577 ...
%e A339649      ...
%o A339649 (PARI) \\ here U(n,k) gives column k as a vector.
%o A339649 R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
%o A339649 U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
%o A339649 {my(T=Mat(vector(8, k, U(8, k-1)~))); for(n=1, #T~, print(T[n,]))}
%Y A339649 Columns k=1..4 are A129860, A220826, A220827, A220828.
%Y A339649 Cf. A319539 (rooted), A339650, A339779.
%K A339649 nonn,tabl
%O A339649 0,8
%A A339649 _Andrew Howroyd_, Dec 14 2020