This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339657 #15 Feb 16 2025 08:34:01 %S A339657 7,13,19,21,22,29,34,37,39,43,46,49,52,53,55,57,61,62,66,71,76,79,82, %T A339657 85,87,89,91,94,101,102,107,111,113,115,116,117,118,121,129,130,131, %U A339657 133,134,136,138,139,146,148,151,154,155,156,159,163,165,166,169,171 %N A339657 Heinz numbers of non-loop-graphical partitions of even numbers. %C A339657 Equals the image of A181819 applied to the set of terms of A320892. %C A339657 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A339657 An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656, with Heinz numbers A339658. %C A339657 The following are equivalent characteristics for any positive integer n: %C A339657 (1) the prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops; %C A339657 (2) n can be factored into distinct semiprimes; %C A339657 (3) the prime signature of n is loop-graphical. %H A339657 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition.</a> %F A339657 A300061 = A339657 \/ A339658. %e A339657 The sequence of terms together with their prime indices begins: %e A339657 7: {4} 57: {2,8} 107: {28} %e A339657 13: {6} 61: {18} 111: {2,12} %e A339657 19: {8} 62: {1,11} 113: {30} %e A339657 21: {2,4} 66: {1,2,5} 115: {3,9} %e A339657 22: {1,5} 71: {20} 116: {1,1,10} %e A339657 29: {10} 76: {1,1,8} 117: {2,2,6} %e A339657 34: {1,7} 79: {22} 118: {1,17} %e A339657 37: {12} 82: {1,13} 121: {5,5} %e A339657 39: {2,6} 85: {3,7} 129: {2,14} %e A339657 43: {14} 87: {2,10} 130: {1,3,6} %e A339657 46: {1,9} 89: {24} 131: {32} %e A339657 49: {4,4} 91: {4,6} 133: {4,8} %e A339657 52: {1,1,6} 94: {1,15} 134: {1,19} %e A339657 53: {16} 101: {26} 136: {1,1,1,7} %e A339657 55: {3,5} 102: {1,2,7} 138: {1,2,9} %e A339657 For example, the three loop-multigraphs with degrees y = (5,2,1) are: %e A339657 {{1,1},{1,1},{1,2},{2,3}} %e A339657 {{1,1},{1,1},{1,3},{2,2}} %e A339657 {{1,1},{1,2},{1,2},{1,3}}, %e A339657 but since none of these is a loop-graph (they have multiple edges), the Heinz number 66 is in the sequence. %t A339657 spsbin[{}]:={{}};spsbin[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; %t A339657 mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]]; %t A339657 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A339657 Select[Range[50],EvenQ[Length[nrmptn[#]]]&&Select[mpsbin[nrmptn[#]],UnsameQ@@#&]=={}&] %Y A339657 A320892 has these prime shadows (see A181819). %Y A339657 A321728 is conjectured to be the version for half-loops {x} instead of loops {x,x}. %Y A339657 A339655 counts these partitions. %Y A339657 A339658 ranks the complement, counted by A339656. %Y A339657 A001358 lists semiprimes, with odd and even terms A046315 and A100484. %Y A339657 A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484. %Y A339657 A101048 counts partitions into semiprimes. %Y A339657 A320655 counts factorizations into semiprimes. %Y A339657 A320656 counts factorizations into squarefree semiprimes. %Y A339657 A339844 counts loop-graphical partitions by length. %Y A339657 factorizations of n into distinct primes or squarefree semiprimes. %Y A339657 The following count vertex-degree partitions and give their Heinz numbers: %Y A339657 - A058696 counts partitions of 2n (A300061). %Y A339657 - A000070 counts non-multigraphical partitions of 2n (A339620). %Y A339657 - A209816 counts multigraphical partitions (A320924). %Y A339657 - A339655 counts non-loop-graphical partitions of 2n (A339657 [this sequence]). %Y A339657 - A339656 counts loop-graphical partitions (A339658). %Y A339657 - A339617 counts non-graphical partitions of 2n (A339618). %Y A339657 - A000569 counts graphical partitions (A320922). %Y A339657 The following count partitions of even length and give their Heinz numbers: %Y A339657 - A027187 has no additional conditions (A028260). %Y A339657 - A096373 cannot be partitioned into strict pairs (A320891). %Y A339657 - A338914 can be partitioned into strict pairs (A320911). %Y A339657 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A339657 - A338916 can be partitioned into distinct pairs (A320912). %Y A339657 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A339657 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A339657 Cf. A001055, A001221, A001222, A007717, A056239, A112798, A320732, A338898, A338912, A338913, A339742, A339839. %K A339657 nonn %O A339657 1,1 %A A339657 _Gus Wiseman_, Dec 18 2020