This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339658 #12 Feb 16 2025 08:34:01 %S A339658 1,3,4,9,10,12,16,25,27,28,30,36,40,48,63,64,70,75,81,84,88,90,100, %T A339658 108,112,120,144,147,160,175,189,192,196,198,208,210,220,225,243,250, %U A339658 252,256,264,270,280,300,324,336,343,352,360,400,432,441,448,462,468,480 %N A339658 Heinz numbers of loop-graphical partitions (of even numbers). %C A339658 Equals the image of A181819 applied to the set of terms of A320912. %C A339658 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A339658 A partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656. %C A339658 The following are equivalent characteristics for any positive integer n: %C A339658 (1) the prime factors of n can be partitioned into distinct pairs; %C A339658 (2) n can be factored into distinct semiprimes; %C A339658 (3) the prime signature of n is loop-graphical. %H A339658 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition.</a> %F A339658 A300061 = A339657 \/ A339658. %e A339658 The sequence of terms > 1 together with their prime indices begins: %e A339658 3: {2} 70: {1,3,4} 192: {1,1,1,1,1,1,2} %e A339658 4: {1,1} 75: {2,3,3} 196: {1,1,4,4} %e A339658 9: {2,2} 81: {2,2,2,2} 198: {1,2,2,5} %e A339658 10: {1,3} 84: {1,1,2,4} 208: {1,1,1,1,6} %e A339658 12: {1,1,2} 88: {1,1,1,5} 210: {1,2,3,4} %e A339658 16: {1,1,1,1} 90: {1,2,2,3} 220: {1,1,3,5} %e A339658 25: {3,3} 100: {1,1,3,3} 225: {2,2,3,3} %e A339658 27: {2,2,2} 108: {1,1,2,2,2} 243: {2,2,2,2,2} %e A339658 28: {1,1,4} 112: {1,1,1,1,4} 250: {1,3,3,3} %e A339658 30: {1,2,3} 120: {1,1,1,2,3} 252: {1,1,2,2,4} %e A339658 36: {1,1,2,2} 144: {1,1,1,1,2,2} 256: {1,1,1,1,1,1,1,1} %e A339658 40: {1,1,1,3} 147: {2,4,4} 264: {1,1,1,2,5} %e A339658 48: {1,1,1,1,2} 160: {1,1,1,1,1,3} 270: {1,2,2,2,3} %e A339658 63: {2,2,4} 175: {3,3,4} 280: {1,1,1,3,4} %e A339658 64: {1,1,1,1,1,1} 189: {2,2,2,4} 300: {1,1,2,3,3} %e A339658 For example, the four loop-graphs with degrees y = (3,1,1,1) are: %e A339658 {{1,1},{1,2},{3,4}} %e A339658 {{1,1},{1,3},{2,4}} %e A339658 {{1,1},{1,4},{2,3}} %e A339658 {{1,2},{1,3},{1,4}}, %e A339658 so the Heinz number 40 is in the sequence. On the other hand, the three loop-multigraphs with degrees y = (4,4) are %e A339658 {{1,1},{1,1},{2,2},{2,2}} %e A339658 {{1,1},{1,2},{1,2},{2,2}} %e A339658 {{1,2},{1,2},{1,2},{1,2}}, %e A339658 but none of these is a loop-graph, so the Heinz number 49 is not in the sequence. %t A339658 spsbin[{}]:={{}};spsbin[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; %t A339658 mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]]; %t A339658 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A339658 Select[Range[25],Select[mpsbin[nrmptn[#]],UnsameQ@@#&]!={}&] %Y A339658 A320912 has these prime shadows (see A181819). %Y A339658 A339656 counts these partitions. %Y A339658 A339657 ranks the complement, counted by A339655. %Y A339658 A001358 lists semiprimes, with squarefree case A006881. %Y A339658 A101048 counts partitions into semiprimes. %Y A339658 A320655 counts factorizations into semiprimes. %Y A339658 The following count vertex-degree partitions and give their Heinz numbers: %Y A339658 - A058696 counts partitions of 2n (A300061). %Y A339658 - A209816 counts multigraphical partitions (A320924). %Y A339658 - A000569 counts graphical partitions (A320922). %Y A339658 The following count partitions of even length and give their Heinz numbers: %Y A339658 - A027187 has no additional conditions (A028260). %Y A339658 - A338914 can be partitioned into strict pairs (A320911). %Y A339658 - A338916 can be partitioned into distinct pairs (A320912). %Y A339658 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A339658 Cf. A001055, A001221, A001222, A007717, A056239, A112798, A320732, A320892, A338898, A338912, A338913, A339112. %K A339658 nonn %O A339658 1,2 %A A339658 _Gus Wiseman_, Dec 18 2020