This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339659 #11 Jan 05 2021 19:07:39 %S A339659 1,0,0,1,0,0,0,1,1,0,0,0,1,2,1,1,0,0,0,0,2,3,2,1,1,0,0,0,0,1,4,5,3,2, %T A339659 1,1,0,0,0,0,1,4,7,7,5,3,2,1,1,0,0,0,0,0,4,9,11,11,7,5,3,2,1,1,0,0,0, %U A339659 0,0,2,11,15,17,15,11,7,5,3,2,1,1 %N A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n. %C A339659 Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787. %C A339659 An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569. %e A339659 Triangle begins: %e A339659 1 %e A339659 0 0 1 %e A339659 0 0 0 1 1 %e A339659 0 0 0 1 2 1 1 %e A339659 0 0 0 0 2 3 2 1 1 %e A339659 0 0 0 0 1 4 5 3 2 1 1 %e A339659 0 0 0 0 1 4 7 7 5 3 2 1 1 %e A339659 For example, row n = 5 counts the following partitions: %e A339659 3322 22222 222211 2221111 22111111 211111111 1111111111 %e A339659 32221 322111 3211111 31111111 %e A339659 33211 331111 4111111 %e A339659 42211 421111 %e A339659 511111 %t A339659 prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]]; %t A339659 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A339659 Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}] %Y A339659 A000569 gives the row sums. %Y A339659 A004250 is the central column. %Y A339659 A005408 gives the row lengths. %Y A339659 A008284/A072233 is the version counting all partitions. %Y A339659 A259873 is the left half of the triangle. %Y A339659 A309356 is a universal embedding. %Y A339659 A027187 counts partitions of even length. %Y A339659 A339559 = partitions that cannot be partitioned into distinct strict pairs. %Y A339659 A339560 = partitions that can be partitioned into distinct strict pairs. %Y A339659 The following count vertex-degree partitions and give their Heinz numbers: %Y A339659 - A000070 counts non-multigraphical partitions of 2n (A339620). %Y A339659 - A000569 counts graphical partitions (A320922). %Y A339659 - A058696 counts partitions of 2n (A300061). %Y A339659 - A147878 counts connected multigraphical partitions (A320925). %Y A339659 - A209816 counts multigraphical partitions (A320924). %Y A339659 - A320921 counts connected graphical partitions (A320923). %Y A339659 - A321728 is conjectured to count non-half-loop-graphical partitions of n. %Y A339659 - A339617 counts non-graphical partitions of 2n (A339618). %Y A339659 - A339655 counts non-loop-graphical partitions of 2n (A339657). %Y A339659 - A339656 counts loop-graphical partitions (A339658). %Y A339659 Cf. A000219, A002100, A006881, A007717, A025065, A320656, A320894, A338914, A338916, A339561, A339661. %K A339659 nonn,tabf %O A339659 0,14 %A A339659 _Gus Wiseman_, Dec 18 2020