cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.

This page as a plain text file.
%I A339659 #11 Jan 05 2021 19:07:39
%S A339659 1,0,0,1,0,0,0,1,1,0,0,0,1,2,1,1,0,0,0,0,2,3,2,1,1,0,0,0,0,1,4,5,3,2,
%T A339659 1,1,0,0,0,0,1,4,7,7,5,3,2,1,1,0,0,0,0,0,4,9,11,11,7,5,3,2,1,1,0,0,0,
%U A339659 0,0,2,11,15,17,15,11,7,5,3,2,1,1
%N A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.
%C A339659 Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787.
%C A339659 An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.
%e A339659 Triangle begins:
%e A339659   1
%e A339659   0 0 1
%e A339659   0 0 0 1 1
%e A339659   0 0 0 1 2 1 1
%e A339659   0 0 0 0 2 3 2 1 1
%e A339659   0 0 0 0 1 4 5 3 2 1 1
%e A339659   0 0 0 0 1 4 7 7 5 3 2 1 1
%e A339659 For example, row n = 5 counts the following partitions:
%e A339659   3322  22222  222211  2221111  22111111  211111111  1111111111
%e A339659         32221  322111  3211111  31111111
%e A339659         33211  331111  4111111
%e A339659         42211  421111
%e A339659                511111
%t A339659 prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
%t A339659 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A339659 Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]
%Y A339659 A000569 gives the row sums.
%Y A339659 A004250 is the central column.
%Y A339659 A005408 gives the row lengths.
%Y A339659 A008284/A072233 is the version counting all partitions.
%Y A339659 A259873 is the left half of the triangle.
%Y A339659 A309356 is a universal embedding.
%Y A339659 A027187 counts partitions of even length.
%Y A339659 A339559 = partitions that cannot be partitioned into distinct strict pairs.
%Y A339659 A339560 = partitions that can be partitioned into distinct strict pairs.
%Y A339659 The following count vertex-degree partitions and give their Heinz numbers:
%Y A339659 - A000070 counts non-multigraphical partitions of 2n (A339620).
%Y A339659 - A000569 counts graphical partitions (A320922).
%Y A339659 - A058696 counts partitions of 2n (A300061).
%Y A339659 - A147878 counts connected multigraphical partitions (A320925).
%Y A339659 - A209816 counts multigraphical partitions (A320924).
%Y A339659 - A320921 counts connected graphical partitions (A320923).
%Y A339659 - A321728 is conjectured to count non-half-loop-graphical partitions of n.
%Y A339659 - A339617 counts non-graphical partitions of 2n (A339618).
%Y A339659 - A339655 counts non-loop-graphical partitions of 2n (A339657).
%Y A339659 - A339656 counts loop-graphical partitions (A339658).
%Y A339659 Cf. A000219, A002100, A006881, A007717, A025065, A320656, A320894, A338914, A338916, A339561, A339661.
%K A339659 nonn,tabf
%O A339659 0,14
%A A339659 _Gus Wiseman_, Dec 18 2020