This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339661 #18 May 02 2022 17:28:23 %S A339661 1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,1, %T A339661 1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,1,0,0,1,0,0,0, %U A339661 1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,1,0 %N A339661 Number of factorizations of n into distinct squarefree semiprimes. %C A339661 A squarefree semiprime (A006881) is a product of any two distinct prime numbers. %C A339661 Also the number of strict multiset partitions of the multiset of prime factors of n, into distinct strict pairs. %H A339661 Antti Karttunen, <a href="/A339661/b339661.txt">Table of n, a(n) for n = 1..69300</a> %H A339661 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A339661 a(n) = Sum_{d|n} (-1)^A001222(d) * A339742(n/d). %e A339661 The a(n) factorizations for n = 210, 1260, 4620, 30030, 69300 are respectively 3, 2, 6, 15, 7: %e A339661 (6*35) (6*10*21) (6*10*77) (6*55*91) (6*10*15*77) %e A339661 (10*21) (6*14*15) (6*14*55) (6*65*77) (6*10*21*55) %e A339661 (14*15) (6*22*35) (10*33*91) (6*10*33*35) %e A339661 (10*14*33) (10*39*77) (6*14*15*55) %e A339661 (10*21*22) (14*33*65) (6*15*22*35) %e A339661 (14*15*22) (14*39*55) (10*14*15*33) %e A339661 (15*22*91) (10*15*21*22) %e A339661 (15*26*77) %e A339661 (21*22*65) %e A339661 (21*26*55) %e A339661 (22*35*39) %e A339661 (26*33*35) %e A339661 (6*35*143) %e A339661 (10*21*143) %e A339661 (14*15*143) %t A339661 bfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; %t A339661 Table[Length[bfacs[n]],{n,100}] %o A339661 (PARI) %o A339661 A280710(n) = (bigomega(n)==2*issquarefree(n)); \\ From A280710. %o A339661 A339661(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<u) && A280710(d), s += A339661(n/d, d))); (s)); \\ _Antti Karttunen_, May 02 2022 %Y A339661 Dirichlet convolution of A008836 (Liouville's lambda) with A339742. %Y A339661 A050326 allows all squarefree numbers, non-strict case A050320. %Y A339661 A320656 is the not necessarily strict version. %Y A339661 A320911 lists all (not just distinct) products of squarefree semiprimes. %Y A339661 A322794 counts uniform factorizations, such as these. %Y A339661 A339561 lists positions of nonzero terms. %Y A339661 A001055 counts factorizations, with strict case A045778. %Y A339661 A001358 lists semiprimes, with squarefree case A006881. %Y A339661 A320655 counts factorizations into semiprimes, with strict case A322353. %Y A339661 The following count vertex-degree partitions and give their Heinz numbers: %Y A339661 - A000070 counts non-multigraphical partitions of 2n (A339620). %Y A339661 - A209816 counts multigraphical partitions (A320924). %Y A339661 - A339655 counts non-loop-graphical partitions of 2n (A339657). %Y A339661 - A339656 counts loop-graphical partitions (A339658). %Y A339661 - A339617 counts non-graphical partitions of 2n (A339618). %Y A339661 - A000569 counts graphical partitions (A320922). %Y A339661 The following count partitions of even length and give their Heinz numbers: %Y A339661 - A096373 cannot be partitioned into strict pairs (A320891). %Y A339661 - A338914 can be partitioned into strict pairs (A320911). %Y A339661 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A339661 - A338916 can be partitioned into distinct pairs (A320912). %Y A339661 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A339661 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A339661 Cf. A001221, A005117, A007716, A028260, A280710, A300061, A320658, A320659, A320923, A330974. %K A339661 nonn %O A339661 1,210 %A A339661 _Gus Wiseman_, Dec 19 2020 %E A339661 More terms and secondary offset added by _Antti Karttunen_, May 02 2022