This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339669 #23 Jan 16 2025 08:47:42 %S A339669 2,2,3,1,3,2,3,2,5,1,5,2,4,2,5,1,5,2,4,2,6,1,6,2,4,2,6,1,6,2,4,2,6,1, %T A339669 7,2,5,2,6,1,6,2,4,2,7,1,7,2,5,2,7,1,6,2,5,2,7,1,6,2,4,2,8,1,9,2,5,2, %U A339669 6,1,6,2,4,2,7,1,9,2,6,2,7,1,7,2,5,2,7,1,6 %N A339669 Number of Fibonacci divisors of Lucas(n)^2 + 1. %C A339669 Particular attention must be paid to the regularity properties of the number of divisors of Lucas(n)^2 + 1 observed for n < 156, when a(n) = 1 or 2. From this observation, we propose two conjectures verified for n < 156. %C A339669 Conjecture 1: a(6*n+3) = 1. %C A339669 Conjecture 2: a(6*n+1) = a(6*n+5) = 2. %C A339669 The table in the links shows an array where terms are arranged in a table of 12 columns and 13 rows. We see the periods when a(n) = 1 and 2. %H A339669 Antti Karttunen, <a href="/A339669/b339669.txt">Table of n, a(n) for n = 0..17800</a> %H A339669 Michel Lagneau, <a href="/A339669/a339669.pdf">Table</a> %e A339669 a(8) = 5 because the divisors of Lucas(8)^2 + 1 = 47^2 + 1 = 2210 are {1, 2, 5, 10, 13, 17, 26, 34, 65, 85, 130, 170, 221, 442, 1105, 2210} with 5 Fibonacci divisors: 1, 2, 5, 13 and 34. %p A339669 with(combinat,fibonacci):nn:=100:F:={}: %p A339669 Lucas:=n->2*fibonacci(n-1)+fibonacci(n): %p A339669 for k from 0 to nn do: %p A339669 F:=F union {fibonacci(k)}: %p A339669 od: %p A339669 for m from 0 to 90 do: %p A339669 l:=Lucas(m)^2+1:d:=numtheory[divisors](l):n0:=nops(d): %p A339669 lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1): %p A339669 od: %t A339669 Array[DivisorSum[LucasL[#]^2 + 1, 1 &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 89, 0] (* _Michael De Vlieger_, Dec 12 2020 *) %o A339669 (PARI) a(n) = { my(l2 = 5*fibonacci(n)^2 + 4*(-1)^n + 1, k = 1, m = 2, res = 1, g); while(m <= l2, if(l2 % m == 0, res++); g = m; m += k; k = g; ); res } \\ _David A. Corneth_, Dec 12 2020 %Y A339669 Cf. A000032, A000045, A001254, A339461. %K A339669 nonn %O A339669 0,1 %A A339669 _Michel Lagneau_, Dec 12 2020