This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339677 #24 Jan 03 2021 21:10:18 %S A339677 1,0,1,0,1,2,0,1,1,3,6,0,1,2,4,6,12,24,0,1,2,3,5,10,14,20,30,60,120,0, %T A339677 1,3,5,6,15,20,30,30,60,90,120,180,360,720,0,1,3,7,8,7,21,35,51,70,42, %U A339677 105,140,210,312,210,420,630,840,1260,2520,5040,0,1,4,9,14,8,28,56,70,84,140 %N A339677 Partition array: T(n, k) is the number of aperiodic necklaces (Lyndon words) on a multiset of colored beads (of size n) whose color multiplicities form the k-th partition of n in Abramowitz-Stegun order. %C A339677 As in A212359, A072605, and A261600, for each partition, the base set of beads is fixed. %C A339677 Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order. We do accordingly for A036038 and A212359. %H A339677 Álvar Ibeas, <a href="/A339677/b339677.txt">First 25 rows, flattened</a> %F A339677 Let L be a partition of n and d be the gcd of its parts. Then, %F A339677 T(n, L) = n^(-1) * Sum_{v|d} mu(v) * A036038(n/v, L/v), where L/v is the partition obtained from L after dividing each part by v. %F A339677 T(n, L) = Sum_{v|d} mu(v) * A212359(n/v, L/v). %F A339677 T(n, L) = n^(-1) * A036038(n, L) - Sum_{1<v|d} v^(-1) * T(n/v, L/v). %F A339677 T(n,k) = A298941(A036035(n,k)) = A318808(A185974(n,k)). - _Andrew Howroyd_, Dec 14 2020 %e A339677 Array begins: %e A339677 k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A339677 -------------------------------------------- %e A339677 n=1: 1 %e A339677 n=2: 0 1 %e A339677 n=3: 0 1 2 %e A339677 n=4: 0 1 1 3 6 %e A339677 n=5: 0 1 2 4 6 12 24 %e A339677 n=6: 0 1 2 3 5 10 14 20 30 60 120 %e A339677 n=7: 0 1 3 5 6 15 20 30 30 60 90 120 180 360 720 %e A339677 Consider partition L = (4, 2). There are 3 = A212359(6, L) necklaces on the bead set {a^4, b^2}: (aaaabb), (aaabab), and (aabaab). The latter has a period smaller than its size (3 < 6), whereas the other two are aperiodic. Hence, T(6, L) = 2. %e A339677 T(n, (1,...,1)) = A212359(n, (1,...,1)) = (n-1)!, counting necklaces with n beads, each in a different color. %o A339677 (PARI) %o A339677 C(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, moebius(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n} %o A339677 Row(n)=[C(Vec(p)) | p<-partitions(n)] %o A339677 for(n=1, 7, print(Row(n))) \\ _Andrew Howroyd_, Dec 14 2020 %Y A339677 Cf. A036035, A036038, A072605, A185974, A212359, A261600 (row sums), A298941, A318808. %K A339677 nonn,tabf %O A339677 1,6 %A A339677 _Álvar Ibeas_, Dec 12 2020