cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339697 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0; let G be the undirected graph with nodes {g_k, k >= 0} such that for any k >= 0, g_k is connected to g_{k+1} and g_{A006068(k)} is connected to g_{A006068(k+1)}; T(n, k) is the distance between g_n and g_k.

This page as a plain text file.
%I A339697 #5 Dec 18 2020 04:03:46
%S A339697 0,1,1,2,0,2,2,1,1,2,3,1,0,1,3,4,2,1,1,2,4,4,3,2,0,2,3,4,3,3,3,1,1,3,
%T A339697 3,3,4,2,2,2,0,2,2,2,4,5,3,1,2,1,1,2,1,3,5,6,4,2,2,1,0,1,2,2,4,6,6,5,
%U A339697 3,3,2,1,1,2,3,3,5,6,6,5,4,4,3,2,0,2,3,4,4,5,6
%N A339697 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0; let G be the undirected graph with nodes {g_k, k >= 0} such that for any k >= 0, g_k is connected to g_{k+1} and g_{A006068(k)} is connected to g_{A006068(k+1)}; T(n, k) is the distance between g_n and g_k.
%H A339697 Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, <a href="https://arxiv.org/abs/2012.04625">Finding structure in sequences of real numbers via graph theory: a problem list</a>, arXiv:2012.04625, Dec 08, 2020.
%H A339697 Rémy Sigrist, <a href="/A339697/a339697.gp.txt">PARI program for A339697</a>
%H A339697 Rémy Sigrist, <a href="/A339697/a339697.png">Colored representation of the table for 0 <= x, y <= 2^10</a> (where the hue is function of T(x, y))
%F A339697 T(n, n) = 0.
%F A339697 T(n, k) = T(k, n).
%F A339697 T(n, k) <= abs(n-k).
%F A339697 T(m, k) <= T(m, n) + T(n, k).
%F A339697 T(n, 0) = A339695(n).
%e A339697 Array T(n, k) begins:
%e A339697   n\k|  0  1  2  3  4  5  6  7  8  9  10  11  12
%e A339697   ---+------------------------------------------
%e A339697     0|  0  1  2  2  3  4  4  3  4  5   6   6   6
%e A339697     1|  1  0  1  1  2  3  3  2  3  4   5   5   5
%e A339697     2|  2  1  0  1  2  3  2  1  2  3   4   4   4
%e A339697     3|  2  1  1  0  1  2  2  2  3  4   5   5   5
%e A339697     4|  3  2  2  1  0  1  1  2  3  4   5   5   4
%e A339697     5|  4  3  3  2  1  0  1  2  3  4   5   4   3
%e A339697     6|  4  3  2  2  1  1  0  1  2  3   4   4   4
%e A339697     7|  3  2  1  2  2  2  1  0  1  2   3   3   3
%e A339697     8|  4  3  2  3  3  3  2  1  0  1   2   2   2
%e A339697     9|  5  4  3  4  4  4  3  2  1  0   1   1   2
%e A339697    10|  6  5  4  5  5  5  4  3  2  1   0   1   2
%e A339697    11|  6  5  4  5  5  4  4  3  2  1   1   0   1
%e A339697    12|  6  5  4  5  4  3  4  3  2  2   2   1   0
%o A339697 (PARI) See Links section.
%Y A339697 Cf. A003188, A006068, A339695, A339696.
%K A339697 nonn,tabl
%O A339697 0,4
%A A339697 _Rémy Sigrist_, Dec 13 2020