This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339740 #12 Jan 05 2021 21:35:10 %S A339740 4,8,9,16,24,25,27,32,40,48,49,54,56,64,72,80,81,88,96,104,108,112, %T A339740 121,125,128,135,136,144,152,160,162,169,176,184,189,192,200,208,216, %U A339740 224,232,240,243,248,250,256,272,288,289,296,297,304,320,324,328,336 %N A339740 Non-products of distinct primes or squarefree semiprimes. %C A339740 Differs from A293243 and A212164 in having 1080, with prime indices {1,1,1,2,2,2,3} and factorization into distinct squarefree numbers 2*3*6*30. %e A339740 The sequence of terms together with their prime indices begins: %e A339740 4: {1,1} 80: {1,1,1,1,3} %e A339740 8: {1,1,1} 81: {2,2,2,2} %e A339740 9: {2,2} 88: {1,1,1,5} %e A339740 16: {1,1,1,1} 96: {1,1,1,1,1,2} %e A339740 24: {1,1,1,2} 104: {1,1,1,6} %e A339740 25: {3,3} 108: {1,1,2,2,2} %e A339740 27: {2,2,2} 112: {1,1,1,1,4} %e A339740 32: {1,1,1,1,1} 121: {5,5} %e A339740 40: {1,1,1,3} 125: {3,3,3} %e A339740 48: {1,1,1,1,2} 128: {1,1,1,1,1,1,1} %e A339740 49: {4,4} 135: {2,2,2,3} %e A339740 54: {1,2,2,2} 136: {1,1,1,7} %e A339740 56: {1,1,1,4} 144: {1,1,1,1,2,2} %e A339740 64: {1,1,1,1,1,1} 152: {1,1,1,8} %e A339740 72: {1,1,1,2,2} 160: {1,1,1,1,1,3} %e A339740 For example, a complete list of strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72); but since none of these consists of only primes or squarefree semiprimes, 72 is in the sequence. %t A339740 sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; %t A339740 Select[Range[100],sqps[#]=={}&] %Y A339740 A013929 allows only primes. %Y A339740 A320894 does not allow primes (but omega is assumed even). %Y A339740 A339741 is the complement. %Y A339740 A339742 has zeros at these positions. %Y A339740 A339840 allows squares of primes. %Y A339740 A001358 lists semiprimes, with squarefree case A006881. %Y A339740 A002100 counts partitions into squarefree semiprimes. %Y A339740 A320663 counts non-isomorphic multiset partitions into singletons or pairs. %Y A339740 A339841 have exactly one factorization into primes or semiprimes. %Y A339740 The following count factorizations: %Y A339740 - A001055 into all positive integers > 1. %Y A339740 - A050326 into distinct squarefree numbers. %Y A339740 - A320655 into semiprimes. %Y A339740 - A320656 into squarefree semiprimes. %Y A339740 - A320732 into primes or semiprimes. %Y A339740 - A322353 into distinct semiprimes. %Y A339740 - A339661 into distinct squarefree semiprimes. %Y A339740 - A339839 into distinct primes or semiprimes. %Y A339740 The following count vertex-degree partitions and give their Heinz numbers: %Y A339740 - A058696 counts partitions of 2n (A300061). %Y A339740 - A000070 counts non-multigraphical partitions of 2n (A339620). %Y A339740 - A339655 counts non-loop-graphical partitions of 2n (A339657). %Y A339740 - A339617 counts non-graphical partitions of 2n (A339618). %Y A339740 - A321728 is conjectured to count non-half-loop-graphical partitions of n. %Y A339740 The following count partitions/factorizations of even length and give their Heinz numbers: %Y A339740 - A027187/A339846 counts all of even length (A028260). %Y A339740 - A096373/A339737 cannot be partitioned into strict pairs (A320891). %Y A339740 - A338915/A339662 cannot be partitioned into distinct pairs (A320892). %Y A339740 - A339559/A339564 cannot be partitioned into distinct strict pairs (A320894). %Y A339740 Cf. A001221, A005117, A050320, A320893, A320911, A320912, A320922, A320924, A339113, A339561. %K A339740 nonn %O A339740 1,1 %A A339740 _Gus Wiseman_, Dec 20 2020