cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339741 Products of distinct primes or squarefree semiprimes.

This page as a plain text file.
%I A339741 #24 Jan 09 2021 15:05:46
%S A339741 1,2,3,5,6,7,10,11,12,13,14,15,17,18,19,20,21,22,23,26,28,29,30,31,33,
%T A339741 34,35,36,37,38,39,41,42,43,44,45,46,47,50,51,52,53,55,57,58,59,60,61,
%U A339741 62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,84
%N A339741 Products of distinct primes or squarefree semiprimes.
%C A339741 First differs from A212167 in lacking 1080, with prime indices {1,1,1,2,2,2,3}.
%C A339741 First differs from A335433 in lacking 72 (see example).
%C A339741 A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
%C A339741 The following are equivalent characteristics for any positive integer n:
%C A339741 (1) the prime factors of n can be partitioned into distinct singletons and strict pairs, i.e., into a set of half-loops and edges;
%C A339741 (2) n can be factored into distinct primes or squarefree semiprimes;
%C A339741 (3) the prime signature of n is half-loop-graphical.
%H A339741 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a>
%H A339741 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a>
%e A339741 The sequence of terms together with their prime indices begins:
%e A339741        1: {}           20: {1,1,3}        39: {2,6}
%e A339741        2: {1}          21: {2,4}          41: {13}
%e A339741        3: {2}          22: {1,5}          42: {1,2,4}
%e A339741        5: {3}          23: {9}            43: {14}
%e A339741        6: {1,2}        26: {1,6}          44: {1,1,5}
%e A339741        7: {4}          28: {1,1,4}        45: {2,2,3}
%e A339741       10: {1,3}        29: {10}           46: {1,9}
%e A339741       11: {5}          30: {1,2,3}        47: {15}
%e A339741       12: {1,1,2}      31: {11}           50: {1,3,3}
%e A339741       13: {6}          33: {2,5}          51: {2,7}
%e A339741       14: {1,4}        34: {1,7}          52: {1,1,6}
%e A339741       15: {2,3}        35: {3,4}          53: {16}
%e A339741       17: {7}          36: {1,1,2,2}      55: {3,5}
%e A339741       18: {1,2,2}      37: {12}           57: {2,8}
%e A339741       19: {8}          38: {1,8}          58: {1,10}
%e A339741 For example, we have 36 = (2*3*6), so 36 is in the sequence. On the other hand, a complete list of all strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72). Since none of these consists of only primes or squarefree semiprimes, 72 is not in the sequence. A complete list of all factorizations of 1080 into primes or squarefree semiprimes is:
%e A339741   (2*2*2*3*3*3*5)
%e A339741   (2*2*2*3*3*15)
%e A339741   (2*2*3*3*3*10)
%e A339741   (2*2*3*3*5*6)
%e A339741   (2*2*3*6*15)
%e A339741   (2*3*3*6*10)
%e A339741   (2*3*5*6*6)
%e A339741   (2*6*6*15)
%e A339741   (3*6*6*10)
%e A339741   (5*6*6*6)
%e A339741 Since none of these is strict, 1080 is not in the sequence.
%t A339741 sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
%t A339741 Select[Range[100],sqps[#]!={}&]
%Y A339741 See link for additional cross-references.
%Y A339741 Allowing only primes gives A013929.
%Y A339741 Not allowing primes gives A339561.
%Y A339741 Complement of A339740.
%Y A339741 Positions of positive terms in A339742.
%Y A339741 Allowing squares of primes gives the complement of A339840.
%Y A339741 Unlabeled multiset partitions of this type are counted by A339888.
%Y A339741 A001055 counts factorizations.
%Y A339741 A001358 lists semiprimes, with squarefree case A006881.
%Y A339741 A002100 counts partitions into squarefree semiprimes.
%Y A339741 A339841 have exactly one factorization into primes or semiprimes.
%Y A339741 Cf. A001221, A005117, A028260, A030229, A050320, A112798, A309356, A320663, A320893, A320924, A338899.
%K A339741 nonn
%O A339741 1,2
%A A339741 _Gus Wiseman_, Dec 23 2020