This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339742 #24 May 02 2022 17:28:30 %S A339742 1,1,1,0,1,2,1,0,0,2,1,1,1,2,2,0,1,1,1,1,2,2,1,0,0,2,0,1,1,4,1,0,2,2, %T A339742 2,1,1,2,2,0,1,4,1,1,1,2,1,0,0,1,2,1,1,0,2,0,2,2,1,3,1,2,1,0,2,4,1,1, %U A339742 2,4,1,0,1,2,1,1,2,4,1,0,0,2,1,3,2,2,2,0,1,3,2,1,2,2,2,0,1,1,1,1,1,4,1,0,4 %N A339742 Number of factorizations of n into distinct primes or squarefree semiprimes. %C A339742 A squarefree semiprime (A006881) is a product of any two distinct prime numbers. %C A339742 The following are equivalent characteristics for any positive integer n: %C A339742 (1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges; %C A339742 (2) n can be factored into distinct primes or squarefree semiprimes. %H A339742 Antti Karttunen, <a href="/A339742/b339742.txt">Table of n, a(n) for n = 1..69300</a> %H A339742 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A339742 a(n) = Sum_{d|n squarefree} A339661(n/d). %e A339742 The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9: %e A339742 (6) (5*6) (6*10) (6*35) (2*6*35) %e A339742 (2*3) (2*15) (2*5*6) (10*21) (5*6*14) %e A339742 (3*10) (2*3*10) (14*15) (6*7*10) %e A339742 (2*3*5) (5*6*7) (2*10*21) %e A339742 (2*3*35) (2*14*15) %e A339742 (2*5*21) (2*5*6*7) %e A339742 (2*7*15) (3*10*14) %e A339742 (3*5*14) (2*3*5*14) %e A339742 (3*7*10) (2*3*7*10) %e A339742 (2*3*5*7) %t A339742 sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; %t A339742 Table[Length[sqps[n]],{n,100}] %o A339742 (PARI) %o A339742 A353471(n) = (numdiv(n)==2*omega(n)); %o A339742 A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<u) && A353471(d), s += A339742(n/d, d))); (s)); \\ _Antti Karttunen_, May 02 2022 %Y A339742 Dirichlet convolution of A008966 with A339661. %Y A339742 A008966 allows only primes. %Y A339742 A339661 does not allow primes, only squarefree semiprimes. %Y A339742 A339740 lists the positions of zeros. %Y A339742 A339741 lists the positions of positive terms. %Y A339742 A339839 allows nonsquarefree semiprimes. %Y A339742 A339887 is the non-strict version. %Y A339742 A001358 lists semiprimes, with squarefree case A006881. %Y A339742 A002100 counts partitions into squarefree semiprimes. %Y A339742 A013929 cannot be factored into distinct primes. %Y A339742 A293511 are a product of distinct squarefree numbers in exactly one way. %Y A339742 A320663 counts non-isomorphic multiset partitions into singletons or pairs. %Y A339742 A339840 cannot be factored into distinct primes or semiprimes. %Y A339742 A339841 have exactly one factorization into primes or semiprimes. %Y A339742 The following count factorizations: %Y A339742 - A001055 into all positive integers > 1. %Y A339742 - A050320 into squarefree numbers. %Y A339742 - A050326 into distinct squarefree numbers. %Y A339742 - A320655 into semiprimes. %Y A339742 - A320656 into squarefree semiprimes. %Y A339742 - A320732 into primes or semiprimes. %Y A339742 - A322353 into distinct semiprimes. %Y A339742 - A339742 [this sequence] into distinct primes or squarefree semiprimes. %Y A339742 - A339839 into distinct primes or semiprimes. %Y A339742 The following count vertex-degree partitions and give their Heinz numbers: %Y A339742 - A000569 counts graphical partitions (A320922). %Y A339742 - A058696 counts all partitions of 2n (A300061). %Y A339742 - A209816 counts multigraphical partitions (A320924). %Y A339742 - A339656 counts loop-graphical partitions (A339658). %Y A339742 - %Y A339742 The following count partitions/factorizations of even length and give their Heinz numbers: %Y A339742 - A027187/A339846 has no additional conditions (A028260). %Y A339742 - A338914/A339562 can be partitioned into edges (A320911). %Y A339742 - A338916/A339563 can be partitioned into distinct pairs (A320912). %Y A339742 - A339559/A339564 cannot be partitioned into distinct edges (A320894). %Y A339742 - A339560/A339619 can be partitioned into distinct edges (A339561). %Y A339742 Cf. A000070, A001221, A005117, A320893, A320923, A338899, A339113, A339617, A353471. %K A339742 nonn %O A339742 1,6 %A A339742 _Gus Wiseman_, Dec 20 2020 %E A339742 More terms from _Antti Karttunen_, May 02 2022