This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339747 #14 Nov 27 2022 02:10:01 %S A339747 1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1, %T A339747 6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1, %U A339747 1,6,1,1,1,1,31,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,6,1,1,1,1,31 %N A339747 a(n) = (5^(valuation(n, 5) + 1) - 1) / 4. %C A339747 Sum of powers of 5 dividing n. %C A339747 Denominator of the quotient sigma(5*n) / sigma(n). %H A339747 Amiram Eldar, <a href="/A339747/b339747.txt">Table of n, a(n) for n = 1..10000</a> %F A339747 G.f.: Sum_{k>=0} 5^k * x^(5^k) / (1 - x^(5^k)). %F A339747 L.g.f.: -log(Product_{k>=0} (1 - x^(5^k))). %F A339747 Dirichlet g.f.: zeta(s) / (1 - 5^(1 - s)). %F A339747 a(n) = sigma(n)/(sigma(5*n) - 5*sigma(n)), where sigma(n) = A000203(n). - _Peter Bala_, Jun 10 2022 %F A339747 From _Amiram Eldar_, Nov 27 2022: (Start) %F A339747 Multiplicative with a(5^e) = (5^(e+1)-1)/4, and a(p^e) = 1 for p != 5. %F A339747 Sum_{k=1..n} a(k) ~ n*log_5(n) + (1/2 + (gamma - 1)/log(5))*n, where gamma is Euler's constant (A001620). (End) %t A339747 Table[(5^(IntegerExponent[n, 5] + 1) - 1)/4, {n, 1, 100}] %t A339747 nmax = 100; CoefficientList[Series[Sum[5^k x^(5^k)/(1 - x^(5^k)), {k, 0, Floor[Log[5, nmax]] + 1}], {x, 0, nmax}], x] // Rest %o A339747 (PARI) a(n) = (5^(valuation(n, 5) + 1) - 1)/4; \\ _Amiram Eldar_, Nov 27 2022 %Y A339747 Cf. A000203, A001620, A038712, A060904, A080278, A088842, A112765, A323921, A339748. %K A339747 nonn,mult %O A339747 1,5 %A A339747 _Ilya Gutkovskiy_, Dec 15 2020