This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339750 #21 Feb 16 2025 08:34:01 %S A339750 1,30,235,1448,7909,40674,202719,994268,4837337,23441366,113377235, %T A339750 547864528,2646278093,12779454410,61709221831,297968336836, %U A339750 1438739595201,6946894643134,33542671171515,161958548471736,782005482553269,3775857399168946,18231454211243951,88029252078796716 %N A339750 Number of (undirected) paths in the 2 X n king graph. %H A339750 Seiichi Manyama, <a href="/A339750/b339750.txt">Table of n, a(n) for n = 1..50</a> %H A339750 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a> %H A339750 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %F A339750 Empirical g.f.: x*(16*x^4 - 48*x^3 + 32*x^2 - 20*x - 1) / ((x-1)^2 * (2*x - 1)^2 * (4*x^2 + 4*x - 1)). - _Vaclav Kotesovec_, Dec 16 2020 %o A339750 (Python) %o A339750 # Using graphillion %o A339750 from graphillion import GraphSet %o A339750 def make_nXk_king_graph(n, k): %o A339750 grids = [] %o A339750 for i in range(1, k + 1): %o A339750 for j in range(1, n): %o A339750 grids.append((i + (j - 1) * k, i + j * k)) %o A339750 if i < k: %o A339750 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339750 if i > 1: %o A339750 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339750 for i in range(1, k * n, k): %o A339750 for j in range(1, k): %o A339750 grids.append((i + j - 1, i + j)) %o A339750 return grids %o A339750 def A(start, goal, n, k): %o A339750 universe = make_nXk_king_graph(n, k) %o A339750 GraphSet.set_universe(universe) %o A339750 paths = GraphSet.paths(start, goal) %o A339750 return paths.len() %o A339750 def A307026(n, k): %o A339750 m = k * n %o A339750 s = 0 %o A339750 for i in range(1, m): %o A339750 for j in range(i + 1, m + 1): %o A339750 s += A(i, j, n, k) %o A339750 return s %o A339750 def A339750(n): %o A339750 return A307026(n, 2) %o A339750 print([A339750(n) for n in range(1, 21)]) %Y A339750 Row 2 of A307026. %Y A339750 Cf. A288516, A339760. %K A339750 nonn %O A339750 1,2 %A A339750 _Seiichi Manyama_, Dec 15 2020