This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339761 #17 Feb 16 2025 08:34:01 %S A339761 1,48,392,4678,43676,406396,3568906,30554390,254834078,2085479610, %T A339761 16791859330,133416458104,1048095087616,8154539310958,62918331433308, %U A339761 481954854686434,3668399080453520,27766093432542984,209120844634276158,1568050593805721822 %N A339761 Number of (undirected) Hamiltonian paths in the 3 X n king graph. %H A339761 Andrew Howroyd, <a href="/A339761/b339761.txt">Table of n, a(n) for n = 1..200</a> %H A339761 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a> %H A339761 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A339761 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (15,-36,-289,708,2617,-1278,-4641,2263,4808,3286,-1422,-3830,-2200, -432,216,216). %F A339761 G.f.: x*(1 + 33*x - 292*x^2 + 815*x^3 + 782*x^4 - 3649*x^5 - 4630*x^6 + 1517*x^7 + 3835*x^8 - 3822*x^9 - 5722*x^10 - 5418*x^11 - 7562*x^12 - 4808*x^13 - 240*x^14 + 720*x^15 + 216*x^16)/((1 - x)*(1 - 4*x - 15*x^2 - 8*x^3 - 6*x^4)^2*(1 - 6*x - 12*x^2 + 27*x^3 - 2*x^4 - 30*x^5 - 4*x^6 + 6*x^7)). - _Andrew Howroyd_, Jan 17 2022 %o A339761 (Python) %o A339761 # Using graphillion %o A339761 from graphillion import GraphSet %o A339761 def make_nXk_king_graph(n, k): %o A339761 grids = [] %o A339761 for i in range(1, k + 1): %o A339761 for j in range(1, n): %o A339761 grids.append((i + (j - 1) * k, i + j * k)) %o A339761 if i < k: %o A339761 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339761 if i > 1: %o A339761 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339761 for i in range(1, k * n, k): %o A339761 for j in range(1, k): %o A339761 grids.append((i + j - 1, i + j)) %o A339761 return grids %o A339761 def A(start, goal, n, k): %o A339761 universe = make_nXk_king_graph(n, k) %o A339761 GraphSet.set_universe(universe) %o A339761 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A339761 return paths.len() %o A339761 def B(n, k): %o A339761 m = k * n %o A339761 s = 0 %o A339761 for i in range(1, m): %o A339761 for j in range(i + 1, m + 1): %o A339761 s += A(i, j, n, k) %o A339761 return s %o A339761 def A339761(n): %o A339761 return B(n, 3) %o A339761 print([A339761(n) for n in range(1, 11)]) %Y A339761 Row 3 of A350729. %Y A339761 Cf. A003685, A308129, A339751, A339760, A339762, A339763. %K A339761 nonn %O A339761 1,2 %A A339761 _Seiichi Manyama_, Dec 16 2020