This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339762 #16 Feb 16 2025 08:34:01 %S A339762 1,208,4678,171592,4743130,132202038,3461461060,88405359072, %T A339762 2197293738684,53565801482634,1284136961473864,30365618160010650, %U A339762 709700882866473654,16422374051280905778,376744989106882359402,8578133199326578887346,194030408441913214687458 %N A339762 Number of (undirected) Hamiltonian paths in the 4 X n king graph. %H A339762 Andrew Howroyd, <a href="/A339762/b339762.txt">Table of n, a(n) for n = 1..200</a> %H A339762 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a> %H A339762 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %o A339762 (Python) %o A339762 # Using graphillion %o A339762 from graphillion import GraphSet %o A339762 def make_nXk_king_graph(n, k): %o A339762 grids = [] %o A339762 for i in range(1, k + 1): %o A339762 for j in range(1, n): %o A339762 grids.append((i + (j - 1) * k, i + j * k)) %o A339762 if i < k: %o A339762 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339762 if i > 1: %o A339762 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339762 for i in range(1, k * n, k): %o A339762 for j in range(1, k): %o A339762 grids.append((i + j - 1, i + j)) %o A339762 return grids %o A339762 def A(start, goal, n, k): %o A339762 universe = make_nXk_king_graph(n, k) %o A339762 GraphSet.set_universe(universe) %o A339762 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A339762 return paths.len() %o A339762 def B(n, k): %o A339762 m = k * n %o A339762 s = 0 %o A339762 for i in range(1, m): %o A339762 for j in range(i + 1, m + 1): %o A339762 s += A(i, j, n, k) %o A339762 return s %o A339762 def A339762(n): %o A339762 return B(n, 4) %o A339762 print([A339762(n) for n in range(1, 11)]) %Y A339762 Row 4 of A350729. %Y A339762 Cf. A003695, A308129, A339760, A339761, A339763. %K A339762 nonn %O A339762 1,2 %A A339762 _Seiichi Manyama_, Dec 16 2020