This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339763 #16 Feb 16 2025 08:34:01 %S A339763 1,768,43676,4743130,364618672,28808442502,2125185542510, %T A339763 153198148096800,10739936528121270,738599412949227054, %U A339763 49945111084852186032,3331294312194018084810,219599512046978073473186,14331641424452867055092544,927231520831830806024847178 %N A339763 Number of (undirected) Hamiltonian paths in the 5 X n king graph. %H A339763 Andrew Howroyd, <a href="/A339763/b339763.txt">Table of n, a(n) for n = 1..200</a> %H A339763 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a> %H A339763 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %o A339763 (Python) %o A339763 # Using graphillion %o A339763 from graphillion import GraphSet %o A339763 def make_nXk_king_graph(n, k): %o A339763 grids = [] %o A339763 for i in range(1, k + 1): %o A339763 for j in range(1, n): %o A339763 grids.append((i + (j - 1) * k, i + j * k)) %o A339763 if i < k: %o A339763 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339763 if i > 1: %o A339763 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339763 for i in range(1, k * n, k): %o A339763 for j in range(1, k): %o A339763 grids.append((i + j - 1, i + j)) %o A339763 return grids %o A339763 def A(start, goal, n, k): %o A339763 universe = make_nXk_king_graph(n, k) %o A339763 GraphSet.set_universe(universe) %o A339763 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A339763 return paths.len() %o A339763 def B(n, k): %o A339763 m = k * n %o A339763 s = 0 %o A339763 for i in range(1, m): %o A339763 for j in range(i + 1, m + 1): %o A339763 s += A(i, j, n, k) %o A339763 return s %o A339763 def A339763(n): %o A339763 return B(n, 5) %o A339763 print([A339763(n) for n in range(1, 11)]) %Y A339763 Row 5 of A350729. %Y A339763 Cf. A003778, A308129, A339760, A339761, A339762. %K A339763 nonn %O A339763 1,2 %A A339763 _Seiichi Manyama_, Dec 16 2020