This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339777 #26 May 25 2023 13:10:27 %S A339777 8,110888,149768,1119363,1172888,2676495,3143528,4782968,5895183, %T A339777 8596623,9168783,15896168,19114383,28174863,48052623,50523663, %U A339777 58186383,72641528,82664463,98168463,113465103,139523343,178810383,208860303,223681935,230675343,248755983,249260943 %N A339777 Numbers m such that tau(m) = tau(m + 1) + 1 = tau(m + 2), where tau(k) = the number of divisors of k (A000005). %C A339777 Corresponding values of tau(a(n)): 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, ... %C A339777 Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), tau(a(n)) - 1, tau(a(n))]: [4, 3, 4], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], [16, 15, 16], ... %C A339777 a(n) is one less than a perfect square. - _David A. Corneth_, Dec 29 2020 %H A339777 David A. Corneth, <a href="/A339777/b339777.txt">Table of n, a(n) for n = 1..10000</a> %e A339777 tau(8) = 4, tau(9) = 3, tau(10) = 4. %t A339777 d1 = 1; d2 = 2; s = {}; Do[d3 = DivisorSigma[0, n]; If[Equal @@ {d1, d2 + 1, d3}, AppendTo[s, n - 2]]; d1 = d2; d2 = d3, {n, 3, 10^7}]; s (* _Amiram Eldar_, Dec 17 2020 *) %t A339777 Position[Partition[DivisorSigma[0,Range[59*10^5]],3,1],_?(#[[1]]==#[[2]]+1==#[[3]]&),1,Heads->False]//Flatten (* _Harvey P. Dale_, May 25 2023 *) %o A339777 (Magma) [m: m in [2..10^6] | #Divisors(m + 1) + 1 eq #Divisors(m) and #Divisors(m + 2) eq #Divisors(m)] %o A339777 (PARI) isok(m) = my(nb = numdiv(m)); (numdiv(m+2) == nb) && (numdiv(m+1) == nb-1); \\ _Michel Marcus_, Dec 18 2020 %Y A339777 Cf. A000005, A339776. %Y A339777 Subsequence of A005563. %Y A339777 Intersection of A062832 and A068208. %K A339777 nonn %O A339777 1,1 %A A339777 _Jaroslav Krizek_, Dec 16 2020 %E A339777 More terms from _Amiram Eldar_, Dec 16 2020