cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339793 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that is a multiple of s(a(n-1)), the sum of the proper divisors of a(n-1).

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 16, 15, 9, 8, 7, 5, 10, 24, 36, 55, 17, 11, 13, 14, 20, 22, 28, 56, 64, 63, 41, 18, 21, 33, 30, 42, 54, 66, 78, 90, 144, 259, 45, 99, 57, 23, 19, 25, 48, 76, 128, 127, 26, 32, 31, 27, 39, 34, 40, 50, 43, 29, 35, 52, 46, 104, 106, 112, 136, 134, 70, 74, 80, 212, 166, 86, 92, 152
Offset: 1

Views

Author

Scott R. Shannon, Dec 17 2020

Keywords

Comments

The sequence is possibly a permutation of the positive integers as when a(n-1) is prime a(n) will be the next smallest number that has not previously occurred. However this will depend on the likelihood of a(n) being a prime as n goes to infinity. For the first 478 terms the last prime is a(144) = 59, while a(478) = 19140499834691254267668, indicating prime values become increasingly rare, and could potentially have a finite number as n->infinity.
The sum of the proper divisors of n is given by A001065(n).

Examples

			a(3) = 3 as s(a(2)) = s(2) = 1, and 3 is the smallest multiple of 1 that has not previously occurred.
a(5) = 6 as s(a(4)) = s(4) = 3, and as 3 has already occurred the next lowest multiple is used, being 6.
a(12) = 5 as s(a(11)) = s(7) = 1, and 5 is the smallest multiple of 1 that has not previously occurred.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    def s(k): return sum(d for d in divisors(k)[:-1])
    def aupto(n):
      alst, aset = [1, 2], {1, 2}
      for k in range(2, n):
        ak = sanm1 = s(alst[-1])
        while ak in aset: ak += sanm1
        alst.append(ak); aset.add(ak)
      return alst     # use alst[n-1] for a(n)
    print(aupto(478)) # Michael S. Branicky, Dec 29 2020