This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339794 #39 Jan 21 2021 13:57:17 %S A339794 4,9,25,18,49,80,121,169,112,135,289,361,441,352,529,416,841,360,961, %T A339794 891,1088,875,1369,1216,1053,1681,672,1849,1472,2209,2601,2809,3025, %U A339794 3249,1856,3481,3721,1984,4225,1584,4489,4761,1960,5041,5329,4736,5929,2496,6241 %N A339794 a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1). %C A339794 Equivalently, subsequence of terms of A339744 excluding terms whose prime factor set has already been encountered. %C A339794 a(n) = A005117(n + 1)^2 when A005117(n + 1) is prime. Proof: if A005117(n + 1) is a prime p then rad(A005117(n + 1))^2 = rad(p)^2 = p^2 and so integers whose prime factors set is the same as the prime factors set of A005117(n + 1) = p are p^m where m >= 1. p^2 > sigma(p^1) = p + 1 but p^2 < sigma(p^2) = p^2 + p + 1. Q.E.D. - _David A. Corneth_, Dec 19 2020 %C A339794 From _Bernard Schott_, Jan 19 2021: (Start) %C A339794 Indeed, a(n) satisfies the double inequality A005117(n+1) < a(n) <= A005117(n+1)^2. %C A339794 It is also possible that a(n) = A005117(n+1)^2, even when A005117(n+1) is not prime; the smallest such example is for a(13) = 441 = 21^2 = A005117(14)^2. (End) %H A339794 David A. Corneth, <a href="/A339794/b339794.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Michel Marcus) %F A339794 a(n) <= A005117(n+1)^2. - _David A. Corneth_, Dec 19 2020 %e A339794 n a(n) prime factor set %e A339794 1 4 [2] A000079 %e A339794 2 9 [3] A000244 %e A339794 3 25 [5] A000351 %e A339794 4 18 [2, 3] A033845 %e A339794 5 49 [7] A000420 %e A339794 6 80 [2, 5] A033846 %e A339794 7 121 [11] A001020 %e A339794 8 169 [13] A001022 %e A339794 9 112 [2, 7] A033847 %e A339794 10 135 [3, 5] A033849 %e A339794 11 289 [17] A001026 %e A339794 12 361 [19] A001029 %e A339794 13 441 [3, 7] A033850 %e A339794 14 352 [2, 11] A033848 %e A339794 15 529 [23] A009967 %e A339794 16 416 [2, 13] A288162 %e A339794 17 841 [29] A009973 %e A339794 18 360 [2, 3, 5] A143207 %o A339794 (PARI) u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););} %o A339794 lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););} %Y A339794 Cf. A000203 (sigma), A007947 (rad). %Y A339794 Cf. A005117 (squarefree numbers), A027748, A265668, A339744. %Y A339794 Subsequence: A001248 (squares of primes). %K A339794 nonn %O A339794 1,1 %A A339794 _Michel Marcus_, Dec 17 2020