This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339796 #16 Feb 16 2025 08:34:01 %S A339796 41676,725408,10489660,136547568,1660652028,19269238080,216100013292, %T A339796 2362533383920,25329574375116,267467192029728,2790488055689724, %U A339796 28832824624840880,295579830237167580,3010545385659678848,30497626012737910348,307541698683047474544 %N A339796 Number of (undirected) paths in the graph C_4 X C_n. %H A339796 Seiichi Manyama, <a href="/A339796/b339796.txt">Table of n, a(n) for n = 3..37</a> %H A339796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a> %o A339796 (Python) %o A339796 # Using graphillion %o A339796 from graphillion import GraphSet %o A339796 def make_CnXCk(n, k): %o A339796 grids = [] %o A339796 for i in range(1, k + 1): %o A339796 for j in range(1, n): %o A339796 grids.append((i + (j - 1) * k, i + j * k)) %o A339796 grids.append((i + (n - 1) * k, i)) %o A339796 for i in range(1, k * n, k): %o A339796 for j in range(1, k): %o A339796 grids.append((i + j - 1, i + j)) %o A339796 grids.append((i + k - 1, i)) %o A339796 return grids %o A339796 def A(start, goal, n, k): %o A339796 universe = make_CnXCk(n, k) %o A339796 GraphSet.set_universe(universe) %o A339796 paths = GraphSet.paths(start, goal) %o A339796 return paths.len() %o A339796 def B(n, k): %o A339796 m = k * n %o A339796 s = 0 %o A339796 for i in range(1, m): %o A339796 for j in range(i + 1, m + 1): %o A339796 s += A(i, j, n, k) %o A339796 return s %o A339796 def A339796(n): %o A339796 return B(n, 4) %o A339796 print([A339796(n) for n in range(3, 10)]) %Y A339796 Cf. A307919, A339795, A358869, A358872. %Y A339796 Cf. A339075, A339798 (Hamiltonian paths). %K A339796 nonn %O A339796 3,1 %A A339796 _Seiichi Manyama_, Dec 17 2020