This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339797 #15 Feb 16 2025 08:34:01 %S A339797 756,4128,18240,73368,277536,1001760,3512160,12009480,40390944, %T A339797 133893936,439304736,1428450072,4613176800,14809528896,47315578848, %U A339797 150534443304,477237381024,1508232832080,4753573999776,14945425070136,46886868887136,146802927436128,458818252975200 %N A339797 Number of (undirected) Hamiltonian paths in the graph C_3 X C_n. %H A339797 Seiichi Manyama, <a href="/A339797/b339797.txt">Table of n, a(n) for n = 3..50</a> %H A339797 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a> %H A339797 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a> %o A339797 (Python) %o A339797 # Using graphillion %o A339797 from graphillion import GraphSet %o A339797 def make_CnXCk(n, k): %o A339797 grids = [] %o A339797 for i in range(1, k + 1): %o A339797 for j in range(1, n): %o A339797 grids.append((i + (j - 1) * k, i + j * k)) %o A339797 grids.append((i + (n - 1) * k, i)) %o A339797 for i in range(1, k * n, k): %o A339797 for j in range(1, k): %o A339797 grids.append((i + j - 1, i + j)) %o A339797 grids.append((i + k - 1, i)) %o A339797 return grids %o A339797 def A(start, goal, n, k): %o A339797 universe = make_CnXCk(n, k) %o A339797 GraphSet.set_universe(universe) %o A339797 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A339797 return paths.len() %o A339797 def B(n, k): %o A339797 m = k * n %o A339797 s = 0 %o A339797 for i in range(1, m): %o A339797 for j in range(i + 1, m + 1): %o A339797 s += A(i, j, n, k) %o A339797 return s %o A339797 def A339797(n): %o A339797 return B(n, 3) %o A339797 print([A339797(n) for n in range(3, 10)]) %Y A339797 Cf. A003685, A268838, A339795, A339798. %K A339797 nonn %O A339797 3,1 %A A339797 _Seiichi Manyama_, Dec 17 2020