This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339798 #17 Feb 16 2025 08:34:01 %S A339798 4128,45696,287160,2172480,11866848,76468352,390714840,2301083680, %T A339798 11288784144,62812654272,299720429528,1604776566400,7505573487360, %U A339798 39105991164160,180179056818584,920223907284960,4191443432295472,21088555826121280,95195388883597464,473503955161244480 %N A339798 Number of (undirected) Hamiltonian paths in the graph C_4 X C_n. %H A339798 Seiichi Manyama, <a href="/A339798/b339798.txt">Table of n, a(n) for n = 3..50</a> %H A339798 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a> %H A339798 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a> %o A339798 (Python) %o A339798 # Using graphillion %o A339798 from graphillion import GraphSet %o A339798 def make_CnXCk(n, k): %o A339798 grids = [] %o A339798 for i in range(1, k + 1): %o A339798 for j in range(1, n): %o A339798 grids.append((i + (j - 1) * k, i + j * k)) %o A339798 grids.append((i + (n - 1) * k, i)) %o A339798 for i in range(1, k * n, k): %o A339798 for j in range(1, k): %o A339798 grids.append((i + j - 1, i + j)) %o A339798 grids.append((i + k - 1, i)) %o A339798 return grids %o A339798 def A(start, goal, n, k): %o A339798 universe = make_CnXCk(n, k) %o A339798 GraphSet.set_universe(universe) %o A339798 paths = GraphSet.paths(start, goal, is_hamilton=True) %o A339798 return paths.len() %o A339798 def B(n, k): %o A339798 m = k * n %o A339798 s = 0 %o A339798 for i in range(1, m): %o A339798 for j in range(i + 1, m + 1): %o A339798 s += A(i, j, n, k) %o A339798 return s %o A339798 def A339798(n): %o A339798 return B(n, 4) %o A339798 print([A339798(n) for n in range(3, 10)]) %Y A339798 Cf. A268838, A339797, A358868, A358870. %Y A339798 Cf. A003695, A339796. %K A339798 nonn %O A339798 3,1 %A A339798 _Seiichi Manyama_, Dec 17 2020