A339799 Decimal expansion of Sum_{m>=1} (-1)^floor(sqrt(m)) / m.
1, 2, 9, 4, 0, 8, 1, 2, 2, 1, 8, 8, 3, 0, 9, 1, 0, 7, 6, 3, 0, 3, 8, 2, 1, 7, 1, 8, 3, 5, 6, 7, 3, 1, 2, 5, 0, 5, 0, 1, 1, 2, 2, 5, 9, 5, 3, 9, 9, 2, 0, 4, 3, 0, 2, 2, 7, 6, 5, 9, 2, 3, 3, 9, 5, 2, 7, 5, 5, 1, 7, 1, 2, 7, 9, 3, 8, 5, 1, 5, 7, 1, 2, 0, 9, 0, 3, 6, 2, 6, 1, 8, 4, 8, 6, 1, 4, 2, 7, 8, 9, 6, 0, 8, 2
Offset: 1
Examples
-1.2940812218830910763038217183567312505011225953992043022765923395275517127938...
References
- Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.3.35, p. 287.
- E. Ramis , C. Deschamps, J. Odoux, Analyse 2, Exercices avec solutions, Classes Préparatoires aux Grandes Ecoles Scientifiques, Masson, Paris, 1985, Exercice 1. 1.14, pp. 12-13.
Links
- Wikipedia, Digamma function.
Programs
-
Maple
evalf(Sum((-1)^n*(Psi(n^2 + 2*n + 1) - Psi(n^2)), n = 1 .. infinity), 120); # Vaclav Kotesovec, Dec 18 2020
-
PARI
sumalt(k=1, (-1)^k * (psi(1 + 2*k + k^2) - psi(k^2))) \\ Vaclav Kotesovec, Dec 18 2020
Formula
Equals Sum_{m>=1} (-1)^floor(sqrt(m)) / m.
Equals Sum_{m>=1} (-1)^m * Sum_{k=m^2..(m+1)^2-1} 1/k.
Equals Sum_{m>=1} (-1)^m * (digamma((m+1)^2) - digamma(m^2)).
Extensions
More terms from Vaclav Kotesovec, Dec 18 2020
Comments