cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339799 Decimal expansion of Sum_{m>=1} (-1)^floor(sqrt(m)) / m.

Original entry on oeis.org

1, 2, 9, 4, 0, 8, 1, 2, 2, 1, 8, 8, 3, 0, 9, 1, 0, 7, 6, 3, 0, 3, 8, 2, 1, 7, 1, 8, 3, 5, 6, 7, 3, 1, 2, 5, 0, 5, 0, 1, 1, 2, 2, 5, 9, 5, 3, 9, 9, 2, 0, 4, 3, 0, 2, 2, 7, 6, 5, 9, 2, 3, 3, 9, 5, 2, 7, 5, 5, 1, 7, 1, 2, 7, 9, 3, 8, 5, 1, 5, 7, 1, 2, 0, 9, 0, 3, 6, 2, 6, 1, 8, 4, 8, 6, 1, 4, 2, 7, 8, 9, 6, 0, 8, 2
Offset: 1

Views

Author

Bernard Schott, Dec 17 2020

Keywords

Comments

When grouped by negative and positive packs = - (1+1/2+1/3) + (1/4+1/5+1/6+1/7+1/8) - (1/9+...+1/15) + (1/16+...+1/24) +...+ (-1)^k (1/k^2 +...+ 1/((k+1)^2-1)) + ...
Sum_{m>=1} (-1)^floor(sqrt(m)) / m^q is convergent iff q > 1/2.

Examples

			-1.2940812218830910763038217183567312505011225953992043022765923395275517127938...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.3.35, p. 287.
  • E. Ramis , C. Deschamps, J. Odoux, Analyse 2, Exercices avec solutions, Classes Préparatoires aux Grandes Ecoles Scientifiques, Masson, Paris, 1985, Exercice 1. 1.14, pp. 12-13.

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^n*(Psi(n^2 + 2*n + 1) - Psi(n^2)), n = 1 .. infinity), 120); # Vaclav Kotesovec, Dec 18 2020
  • PARI
    sumalt(k=1, (-1)^k * (psi(1 + 2*k + k^2) - psi(k^2))) \\ Vaclav Kotesovec, Dec 18 2020

Formula

Equals Sum_{m>=1} (-1)^floor(sqrt(m)) / m.
Equals Sum_{m>=1} (-1)^m * Sum_{k=m^2..(m+1)^2-1} 1/k.
Equals Sum_{m>=1} (-1)^m * (digamma((m+1)^2) - digamma(m^2)).

Extensions

More terms from Vaclav Kotesovec, Dec 18 2020