This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339801 #38 Jan 15 2021 21:22:22 %S A339801 8,6,2,2,8,9,1,0,6,1,7,1,8,3,6,3,8,6,5,3,5,0,8,5,4,5,0,0,5,4,4,2,9,8, %T A339801 5,7,1,6,6,2,1,1,1,4,6,1,0,1,1,4,9,8,5,0,2,9,5,6,4,4,0,3,5,2,7,9,5,6, %U A339801 5,7,6,2,3,3,2,8,8,5,1,0,1,4,2,9,3,6,7,0,0,9,1,8,7,7,9,0,1,2,7,7,4,5,3,2,8 %N A339801 Decimal expansion of the real part of harmonic number H(1/2 + i*sqrt(3)/2), where i=sqrt(-1). %C A339801 For imaginary part see A339802. %C A339801 For real b, Im(Psi(1/2 + b*i)) = Pi*tanh(Pi*b)/2, but no such closed formula is known for the real part (see Wikipedia link). - _Vaclav Kotesovec_, Dec 19 2020 %H A339801 Wikipedia, <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma function</a> %F A339801 Equals 1/2 + gamma + Re(Psi(1/2 + i*sqrt(3)/2)), where gamma is the Euler-Mascheroni constant (see A001620) and Psi is the digamma function. %F A339801 Equals -1/2 + 3*A339604 + 3*A339606. %F A339801 Equals Re((1 + i*sqrt(3))*Sum_{k>=0} 1/((1 + k)*(3 + i*sqrt(3) + 2*k))). %e A339801 0.862289106171836386535085450... %t A339801 RealDigits[N[Re[HarmonicNumber[1/2 + I Sqrt[3]/2]], 105]][[1]] %Y A339801 Cf. A256919, A338815, A339135, A339529, A339530, A339604, A339605, A339606, A339802. %K A339801 nonn,cons %O A339801 0,1 %A A339801 _Artur Jasinski_, Dec 17 2020