cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339808 1 + 1/a(n) is the smallest resistance value of this form that can be obtained from a resistor network of not more than n one-ohm resistors.

This page as a plain text file.
%I A339808 #19 Aug 20 2025 16:31:57
%S A339808 1,2,3,6,10,18,34,55,104,176,320,592,1071,1855,3311,5943,10231,19087
%N A339808 1 + 1/a(n) is the smallest resistance value of this form that can be obtained from a resistor network of not more than n one-ohm resistors.
%H A339808 Fedor Karpelevitch, <a href="https://github.com/fedork/saigon_kt/blob/main/upper.txt">Program output: upper.txt</a>
%H A339808 Fedor Karpelevitch, <a href="https://github.com/fedork/saigon_kt/blob/main/src/main/kotlin/Main7.kt">Program</a>, run with `./gradlew cir2 --args=best`
%e A339808 a(2) = 1: 2 resistors in series produce a resistance of 2 = 1 + 1/a(1) ohm.
%e A339808 a(3) = 2: 3 resistors can produce {1/3, 2/3, 3/2, 3} ohms. The smallest resistance > 1 is 3/2 = 1 + 1/a(2) ohms.
%e A339808 a(4) = 3: 4 resistors can produce the A337517(4) = 9 distinct resistances {1/4, 2/5, 3/5, 3/4, 1, 4/3, 5/3, 5/2, 4} of which 4/3 = 1 + 1/a(4) is the smallest resistance > 1 ohm.
%e A339808 a(n) first differs from A339548(n) - 1 for n = 13. The resistance values of the A337517(13) = 110953 distinct resistances that can be obtained from a network of exactly 13 one-ohm resistors closest to 1 ohm are { ..., 551/552, 576/577, 596/597, 609/610, 1, 593/592, 580/579, 552/551, ...}. The largest resistance < 1 of a network of 13 one-ohm resistors is 609/610 = 1 - 1/A339548(13) ohms, whereas the smallest resistance > 1 is 593/a(13) = 593/592 ohms.
%e A339808 The resistor networks from which the target resistance R = 1 + 1/a(n) can be obtained correspond to simple or multigraphs whose edges are one-ohm resistors. Parallel resistors on one edge are indicated by an exponent > 1 after the affected vertex pair. The resistance R occurs between vertex number 1 and the vertex with maximum number in the graph. In some cases there are other possible representations in addition to the representation given.
%e A339808 .
%e A339808 resistors     vertices
%e A339808    |      R       |   edges
%e A339808    2     2/1      2  [1,2],[2,3]
%e A339808    3     3/2      3  [1,2]^2,[2,3]
%e A339808    4     4/3      4  [1,2]^3,[2,3]
%e A339808    5     7/6      4  [1,2]^2,[2,3],[2,4],[3,4]
%e A339808    6    11/10     5  [1,2]^2,[2,3]^2,[2,4],[3,4]
%e A339808    7    19/18     5  [1,2]^2,[1,3],[2,3],[2,4],[3,5],[4,5]
%e A339808    8    35/34     6  [1,2]^2,[1,3],[2,3],[2,4],[3,4],[3,5],[4,5]
%e A339808    9    56/55     6  [1,2],[1,3],[1,4],[2,4],[3,4],[3,5],[4,5],[4,6],[5,6]
%e A339808   10   105/104    7  [1,3],[1,4],[1,5],[2,4],[2,5],[2,6],[3,4],[3,5],[4,5],
%e A339808                      [4,6]
%e A339808   11   177/176    7  [1,2],[1,4],[1,6],[2,6],[2,7],[3,5],[3,6],[3,7],[4,5],
%e A339808                      [4,6],[5,6]
%e A339808   12   321/320    7  [1,2],[1,4],[1,5],[2,5],[2,6],[3,5],[3,6],[3,7],[4,5],
%e A339808                      [4,6],[4,7],[5,6]
%e A339808   13   593/592    8  [1,4],[1,5],[1,7],[2,4],[2,5],[2,6],[2,7],[3,5],[3,6],
%e A339808                      [3,7],[3,8],[4,6],[5,8]
%e A339808   14  1072/1071   9  [1,6],[1,8],[2,7],[2,8],[2,9],[3,5],[3,7],[3,9],[4,6],
%e A339808                      [4,7],[4,8],[5,6],[5,8],[6,9]
%e A339808   15  1856/1855   9  [1,5],[1,7],[2,5],[2,6],[2,7],[2,8],[3,6],[3,7],[3,9],
%e A339808                      [4,6],[4,8],[4,9],[5,8],[5,9],[7,8]
%e A339808   16  3312/3311  10  [1,7],[1,9],[2,6],[2,7],[2,8],[3,7],[3,8],[3,9],[4,5],
%e A339808                      [4,6],[4,10],[5,8],[5,9],[6,9],[7,10],[8,10]
%e A339808   17  5944/5943  10  [1,2],[1,3],[2,4],[2,5],[2,7],[3,4],[3,6],[3,10],[4,6],
%e A339808                      [4,8],[5,6],[5,8],[6,9],[7,8],[7,9],[8,10],[9,10]
%e A339808   18 10232/10231 11  [1,2],[1,3],[2,4],[2,6],[2,7],[3,5],[3,8],[3,11],[4,5],
%e A339808                      [4,9],[5,7],[6,8],[6,9],[7,9],[7,10],[8,10],[9,11],[10,11]
%e A339808   19 19088/19087 11  [1,2],[1,3],[2,4],[2,5],[2,7],[3,5],[3,6],[3,11],[4,6],
%e A339808                      [4,9],[5,8],[5,10],[6,7],[6,8],[7,9],[7,10],[8,9],[9,11],[10,11]
%Y A339808 Cf. A180414, A337517, A339548.
%K A339808 nonn,hard,more
%O A339808 2,2
%A A339808 _Hugo Pfoertner_, Dec 18 2020
%E A339808 a(18) from _Hugo Pfoertner_, Apr 09 2021
%E A339808 a(19) from _Fedor Karpelevitch_, Aug 20 2025