cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339828 a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - 4*a(n-4) + a(n-5) for n >= 6, where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 16, a(5) = 53.

Original entry on oeis.org

1, 2, 5, 16, 53, 179, 610, 2081, 7103, 24250, 82793, 282671, 965098, 3295049, 11249999, 38409898, 131139593, 447738575, 1528675114, 5219223305, 17819542991, 60839725354, 207719815433, 709199811023, 2421359613226, 8267038830857, 28225436096975, 96367666726186
Offset: 1

Views

Author

Clark Kimberling, Feb 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    z = 40; r = Sqrt[2]; s = 1 + Sqrt[2]; f[x_] := Floor[r*Floor[s*x]];
    Table[f[n], {n, 1, z}] m (* A184922 *)
    a[1] = 1; a[n_] := f[a[n - 1]]; Table[a[n], {n, 1, z}] (* A339828 *)

Formula

Let f(n) = floor(r*floor(s*n)) = A184922(n), where r = sqrt(2) and s = r + 1. Let a(1) = 1. Then a(n) = f(a(n-1)) for n >= 2.
Also, a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - 4*a(n-4) + a(n-5) for n >= 6, where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 16, a(5) = 53.
G.f.: x*(-x^4 + x^3 + x^2 + 2*x - 1)/((x - 1)*(x^2 + x + 1)*(2*x^2 - 4*x + 1)). - Chai Wah Wu, Feb 15 2021