This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339839 #16 Feb 10 2023 17:11:02 %S A339839 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,0,1,2,1,2,2,2,1,2,1,2,1,2,1,4,1,0,2,2, %T A339839 2,2,1,2,2,2,1,4,1,2,2,2,1,1,1,2,2,2,1,2,2,2,2,2,1,5,1,2,2,0,2,4,1,2, %U A339839 2,4,1,2,1,2,2,2,2,4,1,1,0,2,1,5,2,2,2,2,1,5,2,2,2,2,2,0,1,2,2,2,1,4,1,2,4 %N A339839 Number of factorizations of n into distinct primes or semiprimes. %C A339839 A semiprime (A001358) is a product of any two prime numbers. %H A339839 Antti Karttunen, <a href="/A339839/b339839.txt">Table of n, a(n) for n = 1..100000</a> %H A339839 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A339839 a(n) = Sum_{d|n squarefree} A322353(n/d). %e A339839 The a(n) factorizations for n = 6, 16, 30, 60, 180, 210, 240, 420: %e A339839 6 5*6 4*15 4*5*9 6*35 4*6*10 2*6*35 %e A339839 2*3 2*15 6*10 2*6*15 10*21 2*4*5*6 3*4*35 %e A339839 3*10 2*5*6 2*9*10 14*15 2*3*4*10 4*5*21 %e A339839 2*3*5 3*4*5 3*4*15 5*6*7 4*7*15 %e A339839 2*3*10 3*6*10 2*3*35 5*6*14 %e A339839 2*3*5*6 2*5*21 6*7*10 %e A339839 2*7*15 2*10*21 %e A339839 3*5*14 2*14*15 %e A339839 3*7*10 2*5*6*7 %e A339839 2*3*5*7 3*10*14 %e A339839 3*4*5*7 %e A339839 2*3*5*14 %e A339839 2*3*7*10 %t A339839 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A339839 Table[Length[Select[facs[n],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]],{n,100}] %o A339839 (PARI) A339839(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<u) && (bigomega(d)<3), s += A339839(n/d, d))); (s)); \\ _Antti Karttunen_, Feb 10 2023 %Y A339839 A008966 allows only primes. %Y A339839 A320732 is the non-strict version. %Y A339839 A339742 does not allow squares of primes. %Y A339839 A339840 lists the positions of zeros. %Y A339839 A001358 lists semiprimes, with squarefree case A006881. %Y A339839 A002100 counts partitions into squarefree semiprimes. %Y A339839 A013929 cannot be factored into distinct primes. %Y A339839 A293511 are a product of distinct squarefree numbers in exactly one way. %Y A339839 A320663 counts non-isomorphic multiset partitions into singletons or pairs. %Y A339839 A339841 have exactly one factorization into primes or semiprimes. %Y A339839 The following count factorizations: %Y A339839 - A001055 into all positive integers > 1. %Y A339839 - A320655 into semiprimes. %Y A339839 - A320656 into squarefree semiprimes. %Y A339839 - A322353 into distinct semiprimes. %Y A339839 - A339839 [this sequence] into distinct primes or semiprimes. %Y A339839 The following count vertex-degree partitions and give their Heinz numbers: %Y A339839 - A000569 counts graphical partitions (A320922). %Y A339839 - A339656 counts loop-graphical partitions (A339658). %Y A339839 Cf. A000070, A001222, A028260, A320893, A338898, A339617, A339661, A339740, A339741, A339846. %K A339839 nonn %O A339839 1,6 %A A339839 _Gus Wiseman_, Dec 20 2020 %E A339839 Data section extended up to a(105) by _Antti Karttunen_, Feb 10 2023