This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339840 #24 Feb 12 2021 05:35:23 %S A339840 16,32,64,81,96,128,160,192,224,243,256,288,320,352,384,416,448,486, %T A339840 512,544,576,608,625,640,704,729,736,768,800,832,864,896,928,960,972, %U A339840 992,1024,1088,1152,1184,1215,1216,1280,1312,1344,1376,1408,1458,1472,1504 %N A339840 Numbers that cannot be factored into distinct primes or semiprimes. %C A339840 A semiprime (A001358) is a product of any two prime numbers. %H A339840 Robert Israel, <a href="/A339840/b339840.txt">Table of n, a(n) for n = 1..10000</a> %e A339840 The sequence of terms together with their prime indices begins: %e A339840 16: {1,1,1,1} %e A339840 32: {1,1,1,1,1} %e A339840 64: {1,1,1,1,1,1} %e A339840 81: {2,2,2,2} %e A339840 96: {1,1,1,1,1,2} %e A339840 128: {1,1,1,1,1,1,1} %e A339840 160: {1,1,1,1,1,3} %e A339840 192: {1,1,1,1,1,1,2} %e A339840 224: {1,1,1,1,1,4} %e A339840 243: {2,2,2,2,2} %e A339840 256: {1,1,1,1,1,1,1,1} %e A339840 288: {1,1,1,1,1,2,2} %e A339840 320: {1,1,1,1,1,1,3} %e A339840 352: {1,1,1,1,1,5} %e A339840 384: {1,1,1,1,1,1,1,2} %e A339840 416: {1,1,1,1,1,6} %e A339840 448: {1,1,1,1,1,1,4} %e A339840 486: {1,2,2,2,2,2} %e A339840 For example, a complete list of all factorizations of 192 into primes or semiprimes is: %e A339840 (2*2*2*2*2*2*3) %e A339840 (2*2*2*2*2*6) %e A339840 (2*2*2*2*3*4) %e A339840 (2*2*2*4*6) %e A339840 (2*2*3*4*4) %e A339840 (2*4*4*6) %e A339840 (3*4*4*4) %e A339840 Since none of these is strict, 192 is in the sequence. %p A339840 filter:= proc(n) %p A339840 g(map(t -> t[2], ifactors(n)[2])) %p A339840 end proc; %p A339840 g:= proc(L) option remember; local x,i,j,t,s,Cons,R; %p A339840 if nops(L) = 1 then return L[1] > 3 %p A339840 elif nops(L) = 2 then return max(L) > 4 %p A339840 fi; %p A339840 Cons:= {seq(x[i] + x[i,i] + add(x[j,i], j=1..i-1) %p A339840 + add(x[i,j],j=i+1..nops(L)) = L[i], i=1..nops(L))}; %p A339840 R:= traperror(Optimization:-LPSolve(0,Cons, assume=binary)); %p A339840 type(R,string) %p A339840 end proc: %p A339840 select(filter, [$2..2000]); # _Robert Israel_, Dec 28 2020 %t A339840 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A339840 Select[Range[1000],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]=={}&] %Y A339840 Allowing only primes gives A013929. %Y A339840 Removing all squares of primes gives A339740. %Y A339840 These are the positions of zeros in A339839. %Y A339840 The complement is A339889. %Y A339840 A001358 lists semiprimes, with squarefree case A006881. %Y A339840 A002100 counts partitions into squarefree semiprimes. %Y A339840 A293511 are a product of distinct squarefree numbers in exactly one way. %Y A339840 A320663 counts non-isomorphic multiset partitions into singletons or pairs. %Y A339840 A338915 cannot be partitioned into distinct pairs (A320892). %Y A339840 A339841 have exactly one factorization into primes or semiprimes. %Y A339840 The following count factorizations: %Y A339840 - A001055 into all positive integers > 1. %Y A339840 - A320655 into semiprimes. %Y A339840 - A320656 into squarefree semiprimes. %Y A339840 - A320732 into primes or semiprimes. %Y A339840 - A322353 into distinct semiprimes. %Y A339840 - A339661 into distinct squarefree semiprimes. %Y A339840 - A339742 into distinct primes or squarefree semiprimes. %Y A339840 - A339839 into distinct primes or semiprimes. %Y A339840 The following count vertex-degree partitions and give their Heinz numbers: %Y A339840 - A321728 is conjectured to count non-half-loop-graphical partitions of n. %Y A339840 - A339617 counts non-graphical partitions of 2n, ranked by A339618. %Y A339840 - A339655 counts non-loop-graphical partitions of 2n (A339657). %Y A339840 Cf. A000070, A028260, A320893, A320922, A339741, A339846. %K A339840 nonn %O A339840 1,1 %A A339840 _Gus Wiseman_, Dec 20 2020