cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339840 Numbers that cannot be factored into distinct primes or semiprimes.

This page as a plain text file.
%I A339840 #24 Feb 12 2021 05:35:23
%S A339840 16,32,64,81,96,128,160,192,224,243,256,288,320,352,384,416,448,486,
%T A339840 512,544,576,608,625,640,704,729,736,768,800,832,864,896,928,960,972,
%U A339840 992,1024,1088,1152,1184,1215,1216,1280,1312,1344,1376,1408,1458,1472,1504
%N A339840 Numbers that cannot be factored into distinct primes or semiprimes.
%C A339840 A semiprime (A001358) is a product of any two prime numbers.
%H A339840 Robert Israel, <a href="/A339840/b339840.txt">Table of n, a(n) for n = 1..10000</a>
%e A339840 The sequence of terms together with their prime indices begins:
%e A339840     16: {1,1,1,1}
%e A339840     32: {1,1,1,1,1}
%e A339840     64: {1,1,1,1,1,1}
%e A339840     81: {2,2,2,2}
%e A339840     96: {1,1,1,1,1,2}
%e A339840    128: {1,1,1,1,1,1,1}
%e A339840    160: {1,1,1,1,1,3}
%e A339840    192: {1,1,1,1,1,1,2}
%e A339840    224: {1,1,1,1,1,4}
%e A339840    243: {2,2,2,2,2}
%e A339840    256: {1,1,1,1,1,1,1,1}
%e A339840    288: {1,1,1,1,1,2,2}
%e A339840    320: {1,1,1,1,1,1,3}
%e A339840    352: {1,1,1,1,1,5}
%e A339840    384: {1,1,1,1,1,1,1,2}
%e A339840    416: {1,1,1,1,1,6}
%e A339840    448: {1,1,1,1,1,1,4}
%e A339840    486: {1,2,2,2,2,2}
%e A339840 For example, a complete list of all factorizations of 192 into primes or semiprimes is:
%e A339840   (2*2*2*2*2*2*3)
%e A339840   (2*2*2*2*2*6)
%e A339840   (2*2*2*2*3*4)
%e A339840   (2*2*2*4*6)
%e A339840   (2*2*3*4*4)
%e A339840   (2*4*4*6)
%e A339840   (3*4*4*4)
%e A339840 Since none of these is strict, 192 is in the sequence.
%p A339840 filter:= proc(n)
%p A339840   g(map(t -> t[2], ifactors(n)[2]))
%p A339840 end proc;
%p A339840 g:= proc(L) option remember; local x,i,j,t,s,Cons,R;
%p A339840   if nops(L) = 1 then return L[1] > 3
%p A339840   elif nops(L) = 2 then return max(L) > 4
%p A339840   fi;
%p A339840   Cons:= {seq(x[i] + x[i,i] + add(x[j,i], j=1..i-1)
%p A339840      + add(x[i,j],j=i+1..nops(L)) = L[i], i=1..nops(L))};
%p A339840   R:= traperror(Optimization:-LPSolve(0,Cons, assume=binary));
%p A339840   type(R,string)
%p A339840 end proc:
%p A339840 select(filter, [$2..2000]); # _Robert Israel_, Dec 28 2020
%t A339840 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A339840 Select[Range[1000],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]=={}&]
%Y A339840 Allowing only primes gives A013929.
%Y A339840 Removing all squares of primes gives A339740.
%Y A339840 These are the positions of zeros in A339839.
%Y A339840 The complement is A339889.
%Y A339840 A001358 lists semiprimes, with squarefree case A006881.
%Y A339840 A002100 counts partitions into squarefree semiprimes.
%Y A339840 A293511 are a product of distinct squarefree numbers in exactly one way.
%Y A339840 A320663 counts non-isomorphic multiset partitions into singletons or pairs.
%Y A339840 A338915 cannot be partitioned into distinct pairs (A320892).
%Y A339840 A339841 have exactly one factorization into primes or semiprimes.
%Y A339840 The following count factorizations:
%Y A339840 - A001055 into all positive integers > 1.
%Y A339840 - A320655 into semiprimes.
%Y A339840 - A320656 into squarefree semiprimes.
%Y A339840 - A320732 into primes or semiprimes.
%Y A339840 - A322353 into distinct semiprimes.
%Y A339840 - A339661 into distinct squarefree semiprimes.
%Y A339840 - A339742 into distinct primes or squarefree semiprimes.
%Y A339840 - A339839 into distinct primes or semiprimes.
%Y A339840 The following count vertex-degree partitions and give their Heinz numbers:
%Y A339840 - A321728 is conjectured to count non-half-loop-graphical partitions of n.
%Y A339840 - A339617 counts non-graphical partitions of 2n, ranked by A339618.
%Y A339840 - A339655 counts non-loop-graphical partitions of 2n (A339657).
%Y A339840 Cf. A000070, A028260, A320893, A320922, A339741, A339846.
%K A339840 nonn
%O A339840 1,1
%A A339840 _Gus Wiseman_, Dec 20 2020