This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339841 #13 Feb 07 2021 06:25:28 %S A339841 1,2,3,4,5,7,8,9,11,13,17,19,23,25,27,29,31,37,41,43,47,48,49,53,59, %T A339841 61,67,71,73,79,80,83,89,97,101,103,107,109,112,113,121,125,127,131, %U A339841 137,139,144,149,151,157,162,163,167,169,173,176,179,181,191,193 %N A339841 Numbers that can be factored into distinct primes or semiprimes in exactly one way. %C A339841 A semiprime (A001358) is a product of any two prime numbers. %H A339841 Amiram Eldar, <a href="/A339841/b339841.txt">Table of n, a(n) for n = 1..10000</a> %H A339841 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a> %H A339841 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a> %e A339841 The sequence of terms together with their one factorization begins: %e A339841 1 = 29 = 29 80 = 2*4*10 %e A339841 2 = 2 31 = 31 83 = 83 %e A339841 3 = 3 37 = 37 89 = 89 %e A339841 4 = 4 41 = 41 97 = 97 %e A339841 5 = 5 43 = 43 101 = 101 %e A339841 7 = 7 47 = 47 103 = 103 %e A339841 8 = 2*4 48 = 2*4*6 107 = 107 %e A339841 9 = 9 49 = 49 109 = 109 %e A339841 11 = 11 53 = 53 112 = 2*4*14 %e A339841 13 = 13 59 = 59 113 = 113 %e A339841 17 = 17 61 = 61 121 = 121 %e A339841 19 = 19 67 = 67 125 = 5*25 %e A339841 23 = 23 71 = 71 127 = 127 %e A339841 25 = 25 73 = 73 131 = 131 %e A339841 27 = 3*9 79 = 79 137 = 137 %e A339841 For example, we have 360 = 2*3*6*10, so 360 is in the sequence. But 360 is absent from A293511, because we also have 360 = 2*6*30. %t A339841 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A339841 Select[Range[100],Length[Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]]==1&] %Y A339841 See link for additional cross-references. %Y A339841 These are the positions of ones in A339839. %Y A339841 The version for no factorizations is A339840. %Y A339841 The version for at least one factorization is A339889. %Y A339841 A001055 counts factorizations. %Y A339841 A001358 lists semiprimes, with squarefree case A006881. %Y A339841 A037143 lists primes and semiprimes. %Y A339841 A293511 are a product of distinct squarefree numbers in exactly one way. %Y A339841 A320663 counts non-isomorphic multiset partitions into singletons or pairs. %Y A339841 A338915 counts partitions that cannot be partitioned into distinct pairs. %Y A339841 Cf. A002494, A013929, A028260, A320893, A320922, A339618, A339740, A339846. %K A339841 nonn %O A339841 1,2 %A A339841 _Gus Wiseman_, Dec 25 2020