cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339841 Numbers that can be factored into distinct primes or semiprimes in exactly one way.

This page as a plain text file.
%I A339841 #13 Feb 07 2021 06:25:28
%S A339841 1,2,3,4,5,7,8,9,11,13,17,19,23,25,27,29,31,37,41,43,47,48,49,53,59,
%T A339841 61,67,71,73,79,80,83,89,97,101,103,107,109,112,113,121,125,127,131,
%U A339841 137,139,144,149,151,157,162,163,167,169,173,176,179,181,191,193
%N A339841 Numbers that can be factored into distinct primes or semiprimes in exactly one way.
%C A339841 A semiprime (A001358) is a product of any two prime numbers.
%H A339841 Amiram Eldar, <a href="/A339841/b339841.txt">Table of n, a(n) for n = 1..10000</a>
%H A339841 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DegreeSequence.html">Degree Sequence.</a>
%H A339841 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a>
%e A339841 The sequence of terms together with their one factorization begins:
%e A339841      1 =        29 = 29        80 = 2*4*10
%e A339841      2 = 2      31 = 31        83 = 83
%e A339841      3 = 3      37 = 37        89 = 89
%e A339841      4 = 4      41 = 41        97 = 97
%e A339841      5 = 5      43 = 43       101 = 101
%e A339841      7 = 7      47 = 47       103 = 103
%e A339841      8 = 2*4    48 = 2*4*6    107 = 107
%e A339841      9 = 9      49 = 49       109 = 109
%e A339841     11 = 11     53 = 53       112 = 2*4*14
%e A339841     13 = 13     59 = 59       113 = 113
%e A339841     17 = 17     61 = 61       121 = 121
%e A339841     19 = 19     67 = 67       125 = 5*25
%e A339841     23 = 23     71 = 71       127 = 127
%e A339841     25 = 25     73 = 73       131 = 131
%e A339841     27 = 3*9    79 = 79       137 = 137
%e A339841 For example, we have 360 = 2*3*6*10, so 360 is in the sequence. But 360 is absent from A293511, because we also have 360 = 2*6*30.
%t A339841 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A339841 Select[Range[100],Length[Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]]==1&]
%Y A339841 See link for additional cross-references.
%Y A339841 These are the positions of ones in A339839.
%Y A339841 The version for no factorizations is A339840.
%Y A339841 The version for at least one factorization is A339889.
%Y A339841 A001055 counts factorizations.
%Y A339841 A001358 lists semiprimes, with squarefree case A006881.
%Y A339841 A037143 lists primes and semiprimes.
%Y A339841 A293511 are a product of distinct squarefree numbers in exactly one way.
%Y A339841 A320663 counts non-isomorphic multiset partitions into singletons or pairs.
%Y A339841 A338915 counts partitions that cannot be partitioned into distinct pairs.
%Y A339841 Cf. A002494, A013929, A028260, A320893, A320922, A339618, A339740, A339846.
%K A339841 nonn
%O A339841 1,2
%A A339841 _Gus Wiseman_, Dec 25 2020