A339842 Heinz numbers of non-graphical, multigraphical integer partitions of even numbers.
9, 25, 30, 49, 63, 70, 75, 84, 100, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 250, 264, 273, 280, 286, 289, 325, 343, 351, 361, 363, 364, 385, 390, 441, 442, 462, 468, 484, 490, 495, 507, 520, 525, 529, 550, 561, 588, 594, 595, 616, 624, 637, 646
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 9: {2,2} 189: {2,2,2,4} 363: {2,5,5} 25: {3,3} 196: {1,1,4,4} 364: {1,1,4,6} 30: {1,2,3} 198: {1,2,2,5} 385: {3,4,5} 49: {4,4} 210: {1,2,3,4} 390: {1,2,3,6} 63: {2,2,4} 220: {1,1,3,5} 441: {2,2,4,4} 70: {1,3,4} 250: {1,3,3,3} 442: {1,6,7} 75: {2,3,3} 264: {1,1,1,2,5} 462: {1,2,4,5} 84: {1,1,2,4} 273: {2,4,6} 468: {1,1,2,2,6} 100: {1,1,3,3} 280: {1,1,1,3,4} 484: {1,1,5,5} 121: {5,5} 286: {1,5,6} 490: {1,3,4,4} 147: {2,4,4} 289: {7,7} 495: {2,2,3,5} 154: {1,4,5} 325: {3,3,6} 507: {2,6,6} 165: {2,3,5} 343: {4,4,4} 520: {1,1,1,3,6} 169: {6,6} 351: {2,2,2,6} 525: {2,3,3,4} 175: {3,3,4} 361: {8,8} 529: {9,9} For example, a complete list of all multigraphs with degrees (4,2,2,2) is: {{1,2},{1,2},{1,3},{1,4},{3,4}} {{1,2},{1,3},{1,3},{1,4},{2,4}} {{1,2},{1,3},{1,4},{1,4},{2,3}} Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
Links
- Eric Weisstein's World of Mathematics, Degree Sequence.
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
Crossrefs
Programs
-
Mathematica
strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[100],EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]],UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]
Comments