cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339842 Heinz numbers of non-graphical, multigraphical integer partitions of even numbers.

Original entry on oeis.org

9, 25, 30, 49, 63, 70, 75, 84, 100, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 250, 264, 273, 280, 286, 289, 325, 343, 351, 361, 363, 364, 385, 390, 441, 442, 462, 468, 484, 490, 495, 507, 520, 525, 529, 550, 561, 588, 594, 595, 616, 624, 637, 646
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph, and multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}        189: {2,2,2,4}      363: {2,5,5}
     25: {3,3}        196: {1,1,4,4}      364: {1,1,4,6}
     30: {1,2,3}      198: {1,2,2,5}      385: {3,4,5}
     49: {4,4}        210: {1,2,3,4}      390: {1,2,3,6}
     63: {2,2,4}      220: {1,1,3,5}      441: {2,2,4,4}
     70: {1,3,4}      250: {1,3,3,3}      442: {1,6,7}
     75: {2,3,3}      264: {1,1,1,2,5}    462: {1,2,4,5}
     84: {1,1,2,4}    273: {2,4,6}        468: {1,1,2,2,6}
    100: {1,1,3,3}    280: {1,1,1,3,4}    484: {1,1,5,5}
    121: {5,5}        286: {1,5,6}        490: {1,3,4,4}
    147: {2,4,4}      289: {7,7}          495: {2,2,3,5}
    154: {1,4,5}      325: {3,3,6}        507: {2,6,6}
    165: {2,3,5}      343: {4,4,4}        520: {1,1,1,3,6}
    169: {6,6}        351: {2,2,2,6}      525: {2,3,3,4}
    175: {3,3,4}      361: {8,8}          529: {9,9}
For example, a complete list of all multigraphs with degrees (4,2,2,2) is:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
		

Crossrefs

See link for additional cross references.
Distinct prime shadows (images under A181819) of A340017.
A000070 counts non-multigraphical partitions (A339620).
A000569 counts graphical partitions (A320922).
A027187 counts partitions of even length (A028260).
A058696 counts partitions of even numbers (A300061).
A096373 cannot be partitioned into strict pairs.
A209816 counts multigraphical partitions (A320924).
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A320893 can be partitioned into distinct pairs but not into strict pairs.
A339560 can be partitioned into distinct strict pairs.
A339617 counts non-graphical partitions of 2n (A339618).
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]],UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]

Formula

Equals A320924 /\ A339618.
Equals A320924 \ A320922.