cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339847 The number of labeled 6-regular graphs on n nodes.

This page as a plain text file.
%I A339847 #70 Jun 19 2024 10:49:15
%S A339847 1,0,0,0,0,0,0,1,105,30016,11180820,5188453830,2977635137862,
%T A339847 2099132870973600,1803595358964773088,1872726690127181663775,
%U A339847 2329676580698022197516875,3443086402825299720403673760,5997229769947050271535917422040,12218901113752712984458458475480428
%N A339847 The number of labeled 6-regular graphs on n nodes.
%H A339847 Marni Mishna, <a href="/A339847/b339847.txt">Table of n, a(n) for n = 0..195</a> (terms 0..36 from Andrew Howroyd, terms 37..40 from Atabey Kaygun)
%H A339847 Frédéric Chyzak and Marni Mishna <a href="https://arxiv.org/abs/2406.04753">Differential equations satisfied by generating functions of 5-, 6-, and 7-regular labelled graphs: a reduction-based approach</a>, arXiv:2406.04753 [math.CO], 2024.
%H A339847 Atabey Kaygun, <a href="https://kaygun.tumblr.com/post/637867244800573440/counting-graphs-with-a-prescribed-degree-sequence">Counting Graphs with a Prescribed Degree Sequence</a>.
%H A339847 Atabey Kaygun, <a href="/A339847/a339847.lisp.txt">Common LISP program that generates the sequence</a>.
%H A339847 Atabey Kaygun, <a href="https://arxiv.org/abs/2101.02299">Enumerating Labeled Graphs that Realize a Fixed Degree Sequence</a>, arXiv:2101.02299 [math.CO], 2021.
%H A339847 Marni Mishna, <a href="/A339847/a339847.mpl.txt">Maple code to generate terms</a>.
%o A339847 (PARI) \\ Needs GraphsByDegreeSeq from links in A295193.
%o A339847 a(n)={my(M=GraphsByDegreeSeq(n, 6, (p,r)->6-valuation(p,x) <= r)); if(n>=7, vecsum(M[,2]), n==0)} \\ _Andrew Howroyd_, Dec 26 2020
%Y A339847 Column k=6 of A059441.
%Y A339847 Cf. A165627 (unlabeled case), A295193.
%K A339847 nonn
%O A339847 0,9
%A A339847 _Atabey Kaygun_, Dec 21 2020
%E A339847 Terms a(14) and beyond from _Andrew Howroyd_, Dec 26 2020