This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339849 #34 Dec 26 2020 02:42:01 %S A339849 1,1,1,1,4,1,1,13,13,1,1,44,80,44,1,1,148,549,549,148,1,1,498,3851, %T A339849 7104,3851,498,1,1,1676,26499,104100,104100,26499,1676,1,1,5640, %U A339849 183521,1475286,3292184,1475286,183521,5640,1,1,18980,1269684,20842802,100766213,100766213,20842802,1269684,18980,1 %N A339849 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of Hamiltonian circuits within parallelograms of size n X k on the triangular lattice. %H A339849 Seiichi Manyama, <a href="/A339849/b339849.txt">Antidiagonals n = 2..13, flattened</a> %H A339849 M. Peto, <a href="https://doi.org/10.31274/rtd-180813-17105">Studies of protein designability using reduced models</a>, Thesis, 2007. %F A339849 T(n,k) = T(k,n). %e A339849 Square array T(n,k) begins: %e A339849 1, 1, 1, 1, 1, 1, ... %e A339849 1, 4, 13, 44, 148, 498, ... %e A339849 1, 13, 80, 549, 3851, 26499, ... %e A339849 1, 44, 549, 7104, 104100, 1475286, ... %e A339849 1, 148, 3851, 104100, 3292184, 100766213, ... %e A339849 1, 498, 26499, 1475286, 100766213, 6523266332, ... %o A339849 (Python) %o A339849 # Using graphillion %o A339849 from graphillion import GraphSet %o A339849 def make_T_nk(n, k): %o A339849 grids = [] %o A339849 for i in range(1, k + 1): %o A339849 for j in range(1, n): %o A339849 grids.append((i + (j - 1) * k, i + j * k)) %o A339849 if i < k: %o A339849 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339849 for i in range(1, k * n, k): %o A339849 for j in range(1, k): %o A339849 grids.append((i + j - 1, i + j)) %o A339849 return grids %o A339849 def A339849(n, k): %o A339849 universe = make_T_nk(n, k) %o A339849 GraphSet.set_universe(universe) %o A339849 cycles = GraphSet.cycles(is_hamilton=True) %o A339849 return cycles.len() %o A339849 print([A339849(j + 2, i - j + 2) for i in range(11 - 1) for j in range(i + 1)]) %Y A339849 Rows and columns 3..10 give A339850, A339851, A339852, A338970, A339622, A339960, A339961, A339962. %Y A339849 Main diagonal gives A339854. %Y A339849 Cf. A339190. %K A339849 nonn,tabl %O A339849 2,5 %A A339849 _Seiichi Manyama_, Dec 19 2020