This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339850 #32 Jul 07 2021 02:01:41 %S A339850 1,4,13,44,148,498,1676,5640,18980,63872,214944,723336,2434192, %T A339850 8191616,27566672,92768192,312186304,1050578720,3535439040, %U A339850 11897565568,40038044736,134737229824,453421769728,1525868548224,5134898635008,17280115002368,58151561641216 %N A339850 Number of Hamiltonian circuits within parallelograms of size 3 X n on the triangular lattice. %H A339850 Seiichi Manyama, <a href="/A339850/b339850.txt">Table of n, a(n) for n = 2..1000</a> %H A339850 Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021. %H A339850 M. Peto, <a href="https://doi.org/10.31274/rtd-180813-17105">Studies of protein designability using reduced models</a>, Thesis, 2007. %H A339850 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,2). %F A339850 G.f.: (x*(1+x))^2/(1-2*x-4*x^2-2*x^3). %F A339850 a(n) = 2*a(n-1) + 4*a(n-2) + 2*a(n-3) for n > 4. %e A339850 a(2) = 1: %e A339850 *---* %e A339850 / / %e A339850 * * %e A339850 / / %e A339850 *---* %e A339850 a(3) = 4: %e A339850 * *---* *---*---* %e A339850 / \ / / \ / %e A339850 * * * *---* * %e A339850 / / / / %e A339850 *---*---* *---*---* %e A339850 *---*---* *---*---* %e A339850 / / / / %e A339850 * * * * *---* %e A339850 / / \ / / \ %e A339850 *---* * *---*---* %t A339850 Drop[CoefficientList[Series[(x (1 + x))^2/(1 - 2 x - 4 x^2 - 2 x^3), {x, 0, 28}], x], 2] (* _Michael De Vlieger_, Jul 06 2021 *) %o A339850 (PARI) my(N=66, x='x+O('x^N)); Vec((x*(1+x))^2/(1-2*x-4*x^2-2*x^3)) %o A339850 (Python) %o A339850 # Using graphillion %o A339850 from graphillion import GraphSet %o A339850 def make_T_nk(n, k): %o A339850 grids = [] %o A339850 for i in range(1, k + 1): %o A339850 for j in range(1, n): %o A339850 grids.append((i + (j - 1) * k, i + j * k)) %o A339850 if i < k: %o A339850 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339850 for i in range(1, k * n, k): %o A339850 for j in range(1, k): %o A339850 grids.append((i + j - 1, i + j)) %o A339850 return grids %o A339850 def A339849(n, k): %o A339850 universe = make_T_nk(n, k) %o A339850 GraphSet.set_universe(universe) %o A339850 cycles = GraphSet.cycles(is_hamilton=True) %o A339850 return cycles.len() %o A339850 def A339850(n): %o A339850 return A339849(3, n) %o A339850 print([A339850(n) for n in range(2, 21)]) %Y A339850 Row 3 of A339849. %Y A339850 Cf. A339200. %K A339850 nonn %O A339850 2,2 %A A339850 _Seiichi Manyama_, Dec 19 2020