This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339858 #22 Feb 21 2021 10:42:03 %S A339858 6,12,20,30,35,40,42,56,63,70,77,72,88,90,99,117,126,110,130,132,143, %T A339858 154,165,176,187,156,204,228,182,195,208,221,234,247,260,273,210,238, %U A339858 266,240,255,285,330,345,272,304,336,368,400,306,323,340,357,374,391,408,425,442,459 %N A339858 Middle side of integer-sided primitive triangles whose sides a < b < c form a geometric progression. %C A339858 The triples of sides (a, b, c) with a < b < c are in increasing lexicographic order. This sequence lists the b's. %C A339858 For the corresponding primitive triples and miscellaneous properties and references, see A339856. %C A339858 This sequence is not increasing. For example, a(11) = 77 for triple (49, 77, 121) while a(12) = 72 for triple (64, 72, 81). %C A339858 Oblong numbers k*(k+1) >= 6 form a subsequence (A002378) and belong to triples of the form (k^2, k*(k+1), (k+1)^2). %H A339858 Project Euler, <a href="https://projecteuler.net/problem=370">Problem 370: Geometric triangles</a>. %F A339858 a(n) = A339856 (n, 2). %e A339858 a(1) = 6 only for the smallest such triangle (4, 6, 9) with 6^2 = 4*9 and a ratio q = 3/2. %e A339858 a(2) = 12 only for the triangle (9, 12, 16) with 12^2 = 9*16 and a ratio q = 4/3. %p A339858 for a from 1 to 300 do %p A339858 for b from a+1 to floor((1+sqrt(5))/2 *a) do %p A339858 for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c; %p A339858 if k=b^2 and igcd(a, b, c)=1 then print(b); end if; %p A339858 end do; %p A339858 end do; %p A339858 end do; %o A339858 (PARI) lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(b, ", "); ); ); ); );} \\ _Michel Marcus_, Dec 30 2020 %Y A339858 Cf. A339856 (triples), A339857 (smallest side), this sequence (middle side), A339859 (largest side), A339860 (perimeter). %Y A339858 Cf. A336751 (similar for sides in arithmetic progression). %Y A339858 Cf. A335894 (similar for angles in arithmetic progression). %Y A339858 Cf. A002378 \ {0,2} (a subsequence). %K A339858 nonn %O A339858 1,1 %A A339858 _Bernard Schott_, Dec 29 2020