cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349940 Terms of A339863 that are congruent to 5 modulo 6: numbers k == 5 (mod 6) such that A005179(k-1) > A005179(k) < A005179(k+1) >A005179(k+2) < A005179(k+3).

Original entry on oeis.org

425, 845, 1265, 1643, 1925, 2525, 2873, 3335, 3395, 3575, 3683, 3971, 4163, 4307, 4343, 4475, 4613, 4667, 4805, 5141, 5285, 5423, 5603, 5945, 6095, 6305, 6683, 6851, 6875, 6893, 6923, 7337, 7661, 7733, 7973, 8075, 8303, 8393, 8453, 8723, 8825, 9191, 9425, 9581, 9821, 9875
Offset: 1

Views

Author

Jianing Song, Dec 05 2021

Keywords

Comments

Numbers k such that both k and k+2 are in A349939.
Numbers k == 5 (mod 6) such that, the smallest number with exactly k divisors is smaller than the smallest number with exactly k-1 or k+1 divisors, and that the smallest number with exactly k+2 divisors is smaller than the smallest number with exactly k+1 or k+3 divisors.

Examples

			The smallest numbers with exactly 424, 425, 426, 427 and 428 divisors are 472877960873902080, 3317760000, 53126622932283508654080, 840479776858391445504 and 1216944576219100225436835077160960 respectively. The smallest number with exactly 425 divisors is smaller than the smallest number with exactly 424 or 426 divisors, the smallest number with exactly 427 divisors is smaller than the smallest number with exactly 426 or 428 divisors, and 425 == 5 (mod 6), so 425 is a term.
		

Crossrefs

Programs

  • PARI
    isA349940(k) = if(k%6==5, my(v=vector(5, n, A005179(k-2+n))); v[2]A005179 for its program

A328897 Odd numbers k > 1 such that A005179(k-1) > A005179(k) < A005179(k+1).

Original entry on oeis.org

27, 45, 75, 105, 117, 135, 147, 165, 187, 189, 231, 243, 245, 275, 285, 297, 315, 333, 345, 357, 375, 387, 403, 405, 423, 425, 427, 429, 435, 437, 459, 473, 495, 507, 525, 555, 567, 583, 585, 605, 621, 627, 637, 663, 665, 675, 693, 729, 731, 735, 741, 763, 765, 775, 777, 795
Offset: 1

Views

Author

Jianing Song, Oct 30 2019

Keywords

Comments

As only square numbers have an odd number of divisors, for odd k, A005179(k) is usually larger than either A005179(k-1) or A005179(k+1) (or both). This sequence lists the exceptions. There are 71 terms below 10^3, 963 terms below 10^4, 11179 terms below 10^5. It seems that the density of this sequence over all the odd numbers is > 0.2.
Is there any odd k such that A005179(k) is smaller than A005179(k-3), A005179(k-1), A005179(k+1) and A005179(k+3)? There is no such k < 10^5.

Examples

			27 is a term because the smallest number with 27 divisors is 900, which is smaller than both A005179(26) = 12288 and A005179(28) = 960, so 27 is a term.
45 is a term because the smallest number with 45 divisors is 3600, which is smaller than both A005179(44) = 15360 and A005179(46) = 12582912, so 45 is a term.
		

Crossrefs

Programs

Showing 1-2 of 2 results.