This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339884 #26 May 30 2025 01:09:59 %S A339884 1,1,1,1,1,1,0,2,1,1,0,1,2,1,1,0,1,2,2,1,1,0,0,2,2,2,1,1,0,0,1,3,2,2, %T A339884 1,1,0,0,1,2,3,2,2,1,1,0,0,0,2,3,3,2,2,1,1,0,0,0,1,3,3,3,2,2,1,1,0,0, %U A339884 0,1,2,4,3,3,2,2,1,1 %N A339884 Triangle read by rows: T(n, m) gives the number of partitions of n with m parts and parts from {1, 2, 3}. %C A339884 Row sums give A001399(n), for n >= 1. %C A339884 One could add the column [1,repeat 0] for m = 0 starting with n >= 0. %H A339884 Louis Comtet, <a href="https://doi.org/10.1007/978-94-010-2196-8">Advanced Combinatorics</a>, Reidel (1974) %F A339884 Sum_{k=0..n} (-1)^k * T(n,k) = A291983(n). - _Alois P. Heinz_, Feb 01 2021 %F A339884 G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)). [Comtet page 97 [2c]]. - _R. J. Mathar_, May 27 2025 %e A339884 The triangle T(n,m) begins: %e A339884 n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... %e A339884 1: 1 %e A339884 2: 1 1 %e A339884 3: 1 1 1 %e A339884 4: 0 2 1 1 %e A339884 5: 0 1 2 1 1 %e A339884 6: 0 1 2 2 1 1 %e A339884 7: 0 0 2 2 2 1 1 %e A339884 8: 0 0 1 3 2 2 1 1 %e A339884 9: 0 0 1 2 3 2 2 1 1 %e A339884 10: 0 0 0 2 3 3 2 2 1 1 %e A339884 11: 0 0 0 1 3 3 3 2 2 1 1 %e A339884 12: 0 0 0 1 2 4 3 3 2 2 1 1 %e A339884 13: 0 0 0 0 2 3 4 3 3 2 2 1 1 %e A339884 14: 0 0 0 0 1 3 4 4 3 3 2 2 1 1 %e A339884 15: 0 0 0 0 1 2 4 4 4 3 3 2 2 1 1 %e A339884 16: 0 0 0 0 0 2 3 5 4 4 3 3 2 2 1 1 %e A339884 17: 0 0 0 0 0 1 3 4 5 4 4 3 3 2 2 1 1 %e A339884 18: 0 0 0 0 0 1 2 4 5 5 4 4 3 3 2 2 1 1 %e A339884 19: 0 0 0 0 0 0 2 3 5 5 5 4 4 3 3 2 2 1 1 %e A339884 20: 0 0 0 0 0 0 1 3 4 6 5 5 4 4 3 3 2 2 1 1 %e A339884 ... %e A339884 Row n = 6: the partitions of 6 with number of parts m = 1,2, ...., 6, and parts from {1,2,3} are (in Abramowitz-Stegun order): [] | [],[],[3,3] | [],[1,2,3],[2^3] | [1^3,3],[1^2,2^2] | [1^4,2] | 1^6, giving 0, 1, 2, 2, 1, 1. %Y A339884 Cf. A001399, A008284 (all parts), A145362 (parts 1, 2), A232539 (parts <=4), A291983. %Y A339884 Compositions: A007818, A030528 (parts 1, 2), A078803 (parts 1, 2, 3). %K A339884 nonn,tabl,easy %O A339884 1,8 %A A339884 _Wolfdieter Lang_, Jan 31 2021