cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339885 Triangle read by rows: T(n, m) gives the sum of the weights of weighted partitions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.

This page as a plain text file.
%I A339885 #15 Mar 22 2025 02:12:43
%S A339885 1,1,1,0,1,1,0,1,1,1,-1,0,1,1,1,0,-1,1,1,1,1,-1,-1,-1,1,1,1,1,0,-1,-1,
%T A339885 0,1,1,1,1,0,-1,-2,-1,0,1,1,1,1,0,1,-1,-2,0,0,1,1,1,1,0,0,0,-2,-2,0,0,
%U A339885 1,1,1,1
%N A339885 Triangle read by rows: T(n, m) gives the sum of the weights of weighted partitions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.
%C A339885 The row sums are given in A341417.
%C A339885 One could add a row n=0 and the column (1,repeat(0)) including the empty partition with no parts, and number of parts m = 0. The weight w(0) = -1.
%C A339885 The weight from {-1, 0, +1} of a positive number n is w(n) = 0 if n is not an element of the generalized pentagonal numbers {Pent(k) = A001318(k)}_{k>=1}, and if n = Pent(k) then w(n) = (-1)^(ceiling(Pent(k)/2)+1). The sequence
%C A339885 {(n, w(n))}_{n>=1} begins: {(1,+1), (2,+1), (3,0), (4,0), (5,-1), (6,0), (7,-1), ...}. One can also use w(0) = -1. w(n) = -A010815(n), for n >= 0. For n >= 1, w(n) = A257628(n) also.
%C A339885 The weight of a partition is the product of the weights of its parts.
%C A339885 For the triangle giving the sum of the weights of weighted compositions of n with m parts from the generalized pentagonal numbers see A341418.
%F A339885 T(n, m) = Sum_{j=1..p(n,m)} w(Part(n, m, j)), where p(n, m) = A008284(n, m), and the ternary weight of the j-th partition of n with m parts Part(n,m,j), in Abramowitz-Stegun order, is defined as the product of the weights of the parts, by w(n) = -A010815(n), for n >= 1 and m = 1, 2, ..., n.
%e A339885 The triangle T(n, m) begins:
%e A339885   n\m   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 ... A341417
%e A339885   ----------------------------------------------------------------------------
%e A339885   1:    1                                                                 1
%e A339885   2:    1  1                                                              2
%e A339885   3:    0  1  1                                                           2
%e A339885   4:    0  1  1  1                                                        3
%e A339885   5:   -1  0  1  1  1                                                     2
%e A339885   6:    0 -1  1  1  1  1                                                  3
%e A339885   7:   -1 -1 -1  1  1  1  1                                               1
%e A339885   8:    0 -1 -1  0  1  1  1  1                                            2
%e A339885   9:    0 -1 -2 -1  0  1  1  1  1                                         0
%e A339885   10:   0  1 -1 -2  0  0  1  1  1  1                                      2
%e A339885   11:   0  0  0 -2 -2  0  0  1  1  1  1                                   0
%e A339885   12:   1  1  1  0 -2 -1  0  0  1  1  1  1                                4
%e A339885   13:   0  1  1  0 -1 -2 -1  0  0  1  1  1  1                             2
%e A339885   14:   0  2  2  2  0 -1 -1 -1  0  0  1  1  1  1                          7
%e A339885   15:   1  0  1  2  1 -1 -1 -1 -1  0  0  1  1  1  1                       5
%e A339885   16:   0  1  2  2  3  1 -1  0 -1 -1  0  0  1  1  1  1                   10
%e A339885   17:   0  0  0  1  2  2  0 -1  0 -1 -1  0  0  1  1  1  1                 6
%e A339885   18:   0  0  0  2  2  3  2  0  0  0 -1 -1  0  0  1  1  1  1             11
%e A339885   19:   0 -1 -1 -1  1  2  2  1  0  0  0 -1 -1  0  0  1  1  1  1           5
%e A339885   20:   0 -1 -1  0  1  2  3  2  1  1  0  0 -1 -1  0  0  1  1  1  1       10
%e A339885   ...
%e A339885 n = 5: (Partition; weight w) with | separating same m numbers (in Abramowitz -Stegun order):
%e A339885 (5;-1) | (1,4;0), (2,3;0) | (1^2,3;0), (1,2^2;1) | (1^3,2;1) | (1^5;1), hence row n=5 is [-1, 0, 1, 1, 1] from the sum of same m weights.
%Y A339885 Cf. A000045, A001318, A008284, -A010815, A257628, A341417, A341418.
%K A339885 sign,tabl
%O A339885 1,39
%A A339885 _Wolfdieter Lang_, Feb 15 2021