1, 1, 1, 0, 2, 1, 0, 1, 3, 1, -1, 0, 3, 4, 1, 0, -2, 1, 6, 5, 1, -1, -2, -3, 4, 10, 6, 1, 0, -2, -6, -3, 10, 15, 7, 1, 0, -2, -6, -12, 0, 20, 21, 8, 1, 0, 1, -6, -16, -19, 9, 35, 28, 9, 1, 0, 0, 0, -16, -35, -24, 28, 56, 36, 10, 1, 1, 2, 3, -6, -40, -65, -21, 62, 84, 45, 11, 1
Offset: 1
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... A000041
--------------------------------------------------------
1: 1 1
2: 1 1 2
3: 0 2 1 3
4: 0 1 3 1 5
5: -1 0 3 4 1 7
6: 0 -2 1 6 5 1 11
7: -1 -2 -3 4 10 6 1 15
8: 0 -2 -6 -3 10 15 7 1 22
9: 0 -2 -6 -12 0 20 21 8 1 30
10: 0 1 -6 -16 -19 9 35 28 9 1 42
11: 0 0 0 -16 -35 -24 28 56 36 10 1 56
12: 1 2 3 -6 -40 -65 -21 62 84 45 11 1 77
...
For instance the case n = 6: The relevant weighted partitions with parts from the pentagonal numbers and number of compositions are: m = 2: 2*(1,-5) = -2*(1,5), m = 3: 1*(2^3), m = 4: 3*(1^2,2^2), m = 5: 1*(1^4,2), m = 6: 1*(1^6). The other partitions have weight 0.
Comments