cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339886 Numbers whose prime indices cover an interval of positive integers starting with 2.

This page as a plain text file.
%I A339886 #12 Apr 22 2021 01:43:01
%S A339886 1,3,9,15,27,45,75,81,105,135,225,243,315,375,405,525,675,729,735,945,
%T A339886 1125,1155,1215,1575,1875,2025,2187,2205,2625,2835,3375,3465,3645,
%U A339886 3675,4725,5145,5625,5775,6075,6561,6615,7875,8085,8505,9375,10125,10395,10935
%N A339886 Numbers whose prime indices cover an interval of positive integers starting with 2.
%C A339886 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A339886 The sequence of terms together with their prime indices begins:
%e A339886     3: {2}
%e A339886     9: {2,2}
%e A339886    15: {2,3}
%e A339886    27: {2,2,2}
%e A339886    45: {2,2,3}
%e A339886    75: {2,3,3}
%e A339886    81: {2,2,2,2}
%e A339886   105: {2,3,4}
%e A339886   135: {2,2,2,3}
%e A339886   225: {2,2,3,3}
%e A339886   243: {2,2,2,2,2}
%e A339886   315: {2,2,3,4}
%e A339886   375: {2,3,3,3}
%e A339886   405: {2,2,2,2,3}
%e A339886   525: {2,3,3,4}
%e A339886   675: {2,2,2,3,3}
%e A339886   729: {2,2,2,2,2,2}
%e A339886   735: {2,3,4,4}
%e A339886   945: {2,2,2,3,4}
%t A339886 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A339886 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A339886 Select[Range[100],normQ[primeMS[#]-1]&]
%Y A339886 The version starting at 1 is A055932.
%Y A339886 The partitions with these Heinz numbers are counted by A264396.
%Y A339886 Positions of 1's in A339662.
%Y A339886 A000009 counts partitions covering an initial interval.
%Y A339886 A000070 counts partitions with a selected part.
%Y A339886 A016945 lists numbers with smallest prime index 2.
%Y A339886 A034296 counts gap-free (or flat) partitions.
%Y A339886 A056239 adds up prime indices, row sums of A112798.
%Y A339886 A073491 lists numbers with gap-free prime indices.
%Y A339886 A107428 counts gap-free compositions (initial: A107429).
%Y A339886 A286469 and A286470 give greatest difference for Heinz numbers.
%Y A339886 A325240 lists numbers with smallest prime multiplicity 2.
%Y A339886 A342050/A342051 have prime indices with odd/even least gap.
%Y A339886 Cf. A001223, A001522, A006128, A007052, A124010, A257989, A257993, A264401, A317090, A317589, A339737.
%K A339886 nonn
%O A339886 1,2
%A A339886 _Gus Wiseman_, Apr 20 2021