This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339887 #14 Jan 05 2021 15:14:47 %S A339887 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,4,1,1,2,2, %T A339887 2,3,1,2,2,2,1,4,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,5,1,2,2,1,2,4,1,2, %U A339887 2,4,1,3,1,2,2,2,2,4,1,2,1,2,1,5,2,2,2 %N A339887 Number of factorizations of n into primes or squarefree semiprimes. %C A339887 A squarefree semiprime (A006881) is a product of any two distinct prime numbers. %C A339887 Conjecture: also the number of semistandard Young tableaux whose entries are the prime indices of n (A323437). %C A339887 Is this a duplicate of A323437? - _R. J. Mathar_, Jan 05 2021 %H A339887 Gus Wiseman, <a href="/A339741/a339741_1.txt">Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.</a> %F A339887 a(A002110(n)) = A000085(n), and in general if n is a product of k distinct primes, a(n) = A000085(k). %F A339887 a(n) = Sum_{d|n} A320656(n/d), so A320656 is the Moebius transform of this sequence. %e A339887 The a(n) factorizations for n = 36, 60, 180, 360, 420, 840: %e A339887 6*6 6*10 5*6*6 6*6*10 2*6*35 6*10*14 %e A339887 2*3*6 2*5*6 2*6*15 2*5*6*6 5*6*14 2*2*6*35 %e A339887 2*2*3*3 2*2*15 3*6*10 2*2*6*15 6*7*10 2*5*6*14 %e A339887 2*3*10 2*3*5*6 2*3*6*10 2*10*21 2*6*7*10 %e A339887 2*2*3*5 2*2*3*15 2*2*3*5*6 2*14*15 2*2*10*21 %e A339887 2*3*3*10 2*2*2*3*15 2*5*6*7 2*2*14*15 %e A339887 2*2*3*3*5 2*2*3*3*10 3*10*14 2*2*5*6*7 %e A339887 2*2*2*3*3*5 2*2*3*35 2*3*10*14 %e A339887 2*2*5*21 2*2*2*3*35 %e A339887 2*2*7*15 2*2*2*5*21 %e A339887 2*3*5*14 2*2*2*7*15 %e A339887 2*3*7*10 2*2*3*5*14 %e A339887 2*2*3*5*7 2*2*3*7*10 %e A339887 2*2*2*3*5*7 %t A339887 sqpe[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqpe[n/d],Min@@#>=d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; %t A339887 Table[Length[sqpe[n]],{n,100}] %Y A339887 See link for additional cross-references. %Y A339887 Only allowing only primes gives A008966. %Y A339887 Not allowing primes gives A320656. %Y A339887 Unlabeled multiset partitions of this type are counted by A320663/A339888. %Y A339887 Allowing squares of primes gives A320732. %Y A339887 The strict version is A339742. %Y A339887 A001055 counts factorizations. %Y A339887 A001358 lists semiprimes, with squarefree case A006881. %Y A339887 A002100 counts partitions into squarefree semiprimes. %Y A339887 A338899/A270650/A270652 give the prime indices of squarefree semiprimes. %Y A339887 Cf. A000070, A000961, A001221, A096373, A320893, A338914, A339740, A339741, A339841, A339846. %K A339887 nonn %O A339887 1,6 %A A339887 _Gus Wiseman_, Dec 22 2020